| 研究生: |
陳裕仁 Chen, Yu-Jen |
|---|---|
| 論文名稱: |
鎳-鑭系異核金屬團簇之合成、結構及磁性研究 Syntheses, structures, and magnetic properties of heterometallic nickel(II)-lanthanide complexes |
| 指導教授: |
蔡惠蓮
Tsai, Hui-Lien |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 263 |
| 中文關鍵詞: | 鎳/鑭系混金屬團簇 、鏑金屬團簇 、β-雙酮 、單分子磁鐵 |
| 外文關鍵詞: | Ni(II)-Ln(III) complex, Dysprosium complex, β-diketone, single molecule magnets(SMMs) |
| 相關次數: | 點閱:175 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文分為三部分,第一部分以L1為多芽配位基,與Ni(OAc)2·4H2O及LnCl3·6H2O反應,合成一系列[NiIILnIII(L1)2(OH2)(η2-OAc)(μ2-OAc)Cl]·0.5MeCN(Ln = Y(1), Gd(2), Tb(3), Dy(4), Ho(5), Er(6))錯化物,以X光單晶繞射確認其結構。Ni(II)為扭曲的八面體構型,而Ln(III)為扭曲的十二面體構型,以醋酸根離子及L1橋接Ln(III)及Ni(II)離子。從直流磁化率(direct current susceptibility, DC)測量結果,顯示化合物2·Gd—4·Dy金屬間存有鐵磁性(ferromagnetic)作用力。由於Y(III)為逆磁性離子,在1·Y中磁化率隨著溫度下降,可歸因於分子間存有反鐵磁性(antiferromagnetic)作用力,或者是Ni(II)離子的自旋軌域耦合所導致。交流磁化率(alternating current susceptibility, AC)的量測,顯示化合物4·Dy在零磁場下觀察到磁緩現象,其磁異向能(Ueff)為46.3 K。
第二部分以L2作為多芽配位基,與Ni(ClO4)2·6H2O及Ln(ClO4)3 (aq, 50%)反應,合成一系列[NiIILnIII(L2)2(OH2)4(μ2-ClO4)](ClO4)2 (Ln = Y(7), Gd(8), Dy(9), Er(10))錯合物,並以X光單晶繞射確認其結構。Ni(II)為扭曲的八面體構型,而Ln(III)為十二面體構型,以過氯酸根離子與L2橋接Ln(III)及Ni(II)離子。直流磁化率測量結果,顯示化合物8·Gd—9·Dy金屬間存有鐵磁性作用力,而7·Y的磁化率隨著溫度下降,可能是由於分子間的反鐵磁性作用力,或是Ni(II)離子的自旋軌域耦合。在交流磁化率的量測部份,化合物9·Dy在零外加磁場下觀察到磁緩現象,其磁異向能(Ueff)為341.9 K,是至今鎳-鑭系金屬單分子磁鐵中磁異向能最高的,而10·Er在外加磁場下,在低溫範圍有明顯的拖尾訊號產生,是由於量子穿隧效應所導致。藉由比較4·Dy和9·Dy的配位環境和磁異向軸的差異,探討結構對於磁性表現的影響。
最後一個章節中,我們利用L3作為多芽配體,與Ni(ClO4)2·6H2O及Ln(ClO4)3 (aq, 50%)反應,合成一系列[NiII2LnIII(L3)4(OH2)4](ClO4)3 (Ln = Y(11), Gd(12), Tb(13), Dy(14))錯合物,由X光單晶繞射確認其結構。在交流磁化率的量測中,化合物14·Dy在零外加磁場下,於低溫範圍觀察到顯著的量子穿隧效應,其磁異向能(Ueff)為1.86 K。
This work contains three parts. The first part, a family of isostructural dinuclear heterometallic complexes [NiIILnIII(L1)2(OH2)(η2-OAc)(μ2-OAc)Cl]·0.5MeCN (Ln = Y(1), Gd(2), Tb(3), Dy(4), Ho(5), Er(6)) have been successfully synthesized by using β-diketone ligand of L1, and further determined the structures by single crystal X-ray crystallography. Structural studies demonstrate that Ln(III) ions are triangular dodecahedron geometry and Ni(II) ions are slightly distorted octahedral configuration. These two metal centers are bridged by two β-diketone ligands and one μ2-acetate group leading to a [NiIILnIII(μ-O)2(μ2-OAc)] core. Direct current (DC) magnetic susceptibility measurements reveal the presence of intramolecular ferromagnetic interactions in complexes 2·Gd—4·Dy. For 1·Y, existence of intermolecular antiferromagnetic interactions and/or spin-orbit coupling of Ni(II) ion could be observed. Alternating current (AC) magnetic susceptibility data indicate complexes 4·Dy exhibiting slow relaxations of the magnetization without DC field, and possessing the energy barrier (Ueff) of 46.3 K.
For the second part, a series of isostructural dinuclear heterometallic complexes [NiIILnIII(L2)2(OH2)4(μ2-ClO4)](ClO4)2 (Ln = Y(7), Gd(8), Dy(9), Er(10)) were successfully synthesized by using β-diketone ligand of L2. The structures were further identified by single crystal X-ray crystallography. The geometry of Ln(III) ions are triangular dodecahedron and Ni(II) ions are slightly distorted octahedral. The Ln(III) and Ni(II) ions are bridged by two β-diketone ligands and one μ2-perchlorate group, resulting in a [NiIILnIII (μ-O)2(μ2-ClO4)] core. DC magnetic susceptibility measurements display the presence of intramolecular ferromagnetic interactions in
complexes 8·Gd—9·Dy. In the AC magnetic susceptibility, complex 9·Dy performs slow relaxations of magnetization without applied DC field. Furthermore, the anisotropy energy of 9·Dy exhibits the highest Ueff(341.9 K) of all Ni-Ln complexes reported. By discussing the structural difference and the orientation of anisotropy axis, the factors leading to the variation of magnetic properties were comprehended.
The last part, a series of isostructural trinuclear heterometallic complexes [NiII2LnIII(L3)4(OH2)4](ClO4)3 (Ln = Y(11), Gd(12), Tb(13), Dy(14)) were synthesized by using a β-diketone ligand of L3. The structure of these four complexes were further determined by single crystal X-ray crystallography. DC magnetic susceptibility measurements reveal the presence of intramolecular ferromagnetic interactions in complexes 12·Gd—14·Dy. AC magnetic susceptibility data indicate complex 14·Dy presenting slightly slow relaxation and strong quantum tunneling of magnetization (QTM).
References
1. Sessoli R, Gatteschi D, Caneschi A, Novak M. Magnetic bistability in a metal-ion cluster. Nature 1993, 365(6442): 141.
2. Sessoli R, Tsai HL, Schake AR, Wang S, Vincent JB, Folting K, et al. High-spin molecules:[Mn12O12 (O2CR) 16 (H2O) 4]. Journal of the American Chemical Society 1993, 115(5): 1804-1816.
3. Ardavan A, Blundell S. Storing quantum information in chemically engineered nanoscale magnets. Journal of Materials Chemistry 2009, 19(12): 1754-1760.
4. Mannini M, Pineider F, Danieli C, Totti F, Sorace L, Sainctavit P, et al. Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 2010, 468(7322): 417-421.
5. Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nature materials 2009, 8(3): 194-197.
6. Leuenberger MN, Loss D. Quantum computing in molecular magnets. Nature 2001, 410(6830): 789.
7. Stamp PC, Gaita-Arino A. Spin-based quantum computers made by chemistry: hows and whys. Journal of Materials Chemistry 2009, 19(12): 1718-1730.
8. Tejada J, Chudnovsky E, Del Barco E, Hernandez J, Spiller T. Magnetic qubits as hardware for quantum computers. Nanotechnology 2001, 12(2): 181.
9. Rosado Piquer L, Sanudo EC. Heterometallic 3d-4f single-molecule magnets. Dalton transactions 2015, 44(19): 8771-8780.
10. Guo FS, Day BM, Chen YC, Tong ML, Mansikkamaki A, Layfield RA. A Dysprosium Metallocene Single-Molecule Magnet Functioning at the Axial Limit. Angewandte Chemie 2017, 56(38): 11445-11449.
11. Ako AM, Hewitt IJ, Mereacre V, Clérac R, Wernsdorfer W, Anson CE, et al. A
208
Ferromagnetically Coupled Mn19 Aggregate with a RecordS=83/2 Ground Spin State. Angewandte Chemie 2006, 118(30): 5048-5051.
12. Ding YS, Chilton NF, Winpenny RE, Zheng YZ. On Approaching the Limit of Molecular Magnetic Anisotropy: A Near‐Perfect Pentagonal Bipyramidal Dysprosium (III) Single‐Molecule Magnet. Angewandte Chemie International Edition 2016, 55(52): 16071-16074.
13. Rinehart JD, Long JR. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chemical Science 2011, 2(11): 2078.
14. Liu J, Chen YC, Liu JL, Vieru V, Ungur L, Jia JH, et al. A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. J Am Chem Soc 2016, 138(16): 5441-5450.
15. Chen Y, Ma F, Chen X, Dong B, Wang K, Jiang S, et al. A New Bis(phthalocyaninato) Terbium Single-Ion Magnet with an Overall Excellent Magnetic Performance. Inorganic chemistry 2017, 56(22): 13889-13896.
16. Harriman KL, Brosmer JL, Ungur L, Diaconescu PL, Murugesu M. Pursuit of Record Breaking Energy Barriers: A Study of Magnetic Axiality in Diamide Ligated Dy(III) Single-Molecule Magnets. J Am Chem Soc 2017, 139(4): 1420-1423.
17. Dong HM, Li HY, Zhang YQ, Yang EC, Zhao XJ. Magnetic Relaxation Dynamics of a Centrosymmetric Dy2 Single-Molecule Magnet Triggered by Magnetic-Site Dilution and External Magnetic Field. Inorganic chemistry 2017, 56(10): 5611-5622.
18. Sun L, Zhang S, Jiang Z, Yang Q, Chen S, Zhang Y, et al. Interchange between coordinated and lattice solvents generates the highest energy barrier within nine-coordinated Dy(III) single molecule magnets. Dalton transactions 2017, 46(34): 11159-11165.
19. Harriman KLM, Le Roy JJ, Ungur L, Holmberg RJ, Korobkov I, Murugesu M. Cycloheptatrienyl trianion: an elusive bridge in the search of exchange coupled dinuclear organolanthanide single-molecule magnets. Chem Sci 2017, 8(1): 231-240.
20. Peng Y, Mereacre V, Anson CE, Powell AK. The role of coordinated solvent on Co(ii)
209
ions in tuning the single molecule magnet properties in a {CoDy} system. Dalton transactions 2017, 46(16): 5337-5343.
21. Ueno T, Fujinami T, Matsumoto N, Furusawa M, Irie R, Re N, et al. Circular and Chainlike Copper(II)-Lanthanide(III) Complexes Generated by Assembly Reactions of Racemic and Chiral Copper(II) Cross-Linking Ligand Complexes with Ln(III)(NO3)3.6H2O (Ln(III) = Gd(III), Tb(III), Dy(III)). Inorganic chemistry 2017, 56(3): 1679-1695.
22. Rinehart JD, Fang M, Evans WJ, Long JR. Strong exchange and magnetic blocking in N(2)(3)(-)-radical-bridged lanthanide complexes. Nature chemistry 2011, 3(7): 538-542.
23. Mahapatra P, Ghosh S, Koizumi N, Kanetomo T, Ishida T, Drew MGB, et al. Structural variations in (CuL)2Ln complexes of a series of lanthanide ions with a salen-type unsymmetrical Schiff base(H2L): Dy and Tb derivatives as potential single-molecule magnets. Dalton transactions 2017, 46(36): 12095-12105.
24. Liu K, Shi W, Cheng P. Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes. Coordination Chemistry Reviews 2015, 289-290: 74-122.
25. Liu JL, Wu JY, Huang GZ, Chen YC, Jia JH, Ungur L, et al. Desolvation-Driven 100-Fold Slow-down of Tunneling Relaxation Rate in Co(II)-Dy(III) Single-Molecule Magnets through a Single-Crystal-to-Single-Crystal Process. Scientific reports 2015, 5: 16621.
26. Liu JL, Wu JY, Chen YC, Mereacre V, Powell AK, Ungur L, et al. A heterometallic Fe(II)-Dy(III) single-molecule magnet with a record anisotropy barrier. Angewandte Chemie 2014, 53(47): 12966-12970.
27. Liu J-L, Chen Y-C, Zheng Y-Z, Lin W-Q, Ungur L, Wernsdorfer W, et al. Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh. Chemical Science 2013, 4(8): 3310.
28. 林羽珊(2017),「鈷-鑭系金屬簇之合成,結構及磁性研究」,國立成功大學化學研究所碩士論文。
210
29. 陳瑋(2016),「鎳-鑭系金屬簇之合成,結構及磁性研究」,國立成功大學化學研究所碩士論文。
30. Dolai M, Ali M, Titis J, Boca R. Cu(II)-Dy(III) and Co(III)-Dy(III) based single molecule magnets with multiple slow magnetic relaxation processes in the Cu(II)-Dy(III) complex. Dalton transactions 2015, 44(29): 13242-13249.
31. Zhao FH, Li H, Che YX, Zheng JM, Vieru V, Chibotaru LF, et al. Synthesis, structure, and magnetic properties of Dy(2)Co(2)L(1)(0)(bipy)(2) and Ln(2)Ni(2)L(1)(0)(bipy)(2), Ln = La, Gd, Tb, Dy, and Ho: slow magnetic relaxation in Dy(2)Co(2)L(1)(0)(bipy)(2) and Dy(2)Ni(2)L(1)(0)(bipy)(2). Inorganic chemistry 2014, 53(18): 9785-9799.
32. Heras Ojea MJ, Milway VA, Velmurugan G, Thomas LH, Coles SJ, Wilson C, et al. Enhancement of TbIII–CuII Single‐Molecule Magnet Performance through Structural Modification. Chemistry–A European Journal 2016, 22(36): 12839-12848.
33. Wen H-R, Liu S-J, Xie X-R, Bao J, Liu C-M, Chen J-L. A family of nickel–lanthanide heterometallic dinuclear complexes derived from a chiral Schiff-base ligand exhibiting single-molecule magnet behaviors. Inorganica Chimica Acta 2015, 435: 274-282.
34. Jiang L, Liu Y, Liu X, Tian J, Yan S. Three series of heterometallic Ni(II)-Ln(III) Schiff base complexes: synthesis, crystal structures and magnetic characterization. Dalton transactions 2017, 46(37): 12558-12573.
35. Pasatoiu TD, Etienne M, Madalan AM, Andruh M, Sessoli R. Dimers and chains of {3d–4f} single molecule magnets constructed from heterobimetallic tectons. Dalton transactions 2010, 39(20): 4802-4808.
36. Ahmed N, Das C, Vaidya S, Langley SK, Murray KS, Shanmugam M. Nickel(II)-lanthanide(III) magnetic exchange coupling influencing single-molecule magnetic features in {Ni2 Ln2 } complexes. Chemistry 2014, 20(44): 14235-14239.
37. Zou HH, Sheng LB, Liang FP, Chen ZL, Zhang YQ. Experimental and theoretical investigations of four 3d-4f butterfly single-molecule magnets. Dalton transactions 2015, 44(42): 18544-18552.
211
38. Chandrasekhar V, Bag P, Kroener W, Gieb K, Muller P. Pentanuclear heterometallic {Ni2Ln3} (Ln = Gd, Dy, Tb, Ho) assemblies. Single-molecule magnet behavior and multistep relaxation in the dysprosium derivative. Inorganic chemistry 2013, 52(22): 13078-13086.
39. Dong HM, Li Y, Liu ZY, Yang EC, Zhao XJ. A novel oxime-derived 3d-4f single-molecule magnet exhibiting two single-ion magnetic relaxations. Dalton transactions 2016, 45(29): 11876-11882.
40. Levine R, Sneed JK. The Synthesis of New β-diketones. Journal of the American Chemical Society 1951, 73(9): 4478-4478.
41. Sheldrick GM. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations and Advances 2015, 71(1): 3-8.
42. Bain GA, Berry JF. Diamagnetic corrections and Pascal's constants. Journal of Chemical Education 2008, 85(4): 532.
43. Alvarez S, Alemany P, Casanova D, Cirera J, Llunell M, Avnir D. Shape maps and polyhedral interconversion paths in transition metal chemistry. Coordination Chemistry Reviews 2005, 249(17-18): 1693-1708.
44. Costes JP, Yamaguchi T, Kojima M, Vendier L. Experimental evidence for the participation of 5d Gd(III) orbitals in the magnetic interaction in Ni-Gd complexes. Inorganic chemistry 2009, 48(12): 5555-5561.
45. Das S, Dey A, Kundu S, Biswas S, Mota AJ, Colacio E, et al. Linear {NiII-LnIII-NiII} complexes containing twisted planar Ni(mu-phenolate)2 Ln fragments: synthesis, structure, and magnetothermal properties. Chemistry, an Asian journal 2014, 9(7): 1876-1887.
46. Costes JP, Dahan F, Vendier L, Shova S, Lorusso G, Evangelisti M. Ni(II)-Ln(III) complexes with o-vanillin as the main ligand: syntheses, structures, magnetic and magnetocaloric properties. Dalton transactions 2018, 47(4): 1106-1116.
47. Wu H, Li M, Zhang S, Ke H, Zhang Y, Zhuang G, et al. Magnetic Interaction
212
Affecting the Zero-Field Single-Molecule Magnet Behaviors in Isomorphic {Ni(II)2Dy(III)2} and {Co(II)2Dy(III)2} Tetranuclear Complexes. Inorganic chemistry 2017, 56(18): 11387-11397.
48. Chandrasekhar V, Pandian BM, Boomishankar R, Steiner A, Vittal JJ, Houri A, et al. Trinuclear Heterobimetallic Ni2Ln complexes [L2Ni2Ln][ClO4](Ln= La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er; LH3=(S) P [N (Me) N CH− C6H3-2-OH-3-OMe] 3): From Simple Paramagnetic Complexes to Single-Molecule Magnet Behavior. Inorganic chemistry 2008, 47(11): 4918-4929.
49. Kahn ML, Sutter J-P, Golhen S, Guionneau P, Ouahab L, Kahn O, et al. Systematic investigation of the nature of the coupling between a Ln (III) ion (Ln= Ce (III) to Dy (III)) and its aminoxyl radical ligands. structural and magnetic characteristics of a series of {Ln (organic radical) 2} compounds and the related {Ln (Nitrone) 2} derivatives. Journal of the American Chemical Society 2000, 122(14): 3413-3421.
50. Sutter J-P, Kahn ML, Mörtl KP, Ballou R, Porcher P. Experimental and analytical insight into the exchange interaction involving paramagnetic f ions. Polyhedron 2001, 20(11-14): 1593-1597.
51. Kahn ML, Ballou R, Porcher P, Kahn O, Sutter JP. Analytical Determination of the {Ln–Aminoxyl Radical} Exchange Interaction Taking into Account Both the Ligand‐Field Effect and the Spin–Orbit Coupling of the Lanthanide Ion (Ln= DyIII and HoIII). Chemistry–A European Journal 2002, 8(2): 525-531.
52. Guo YN, Chen XH, Xue S, Tang J. Modulating magnetic dynamics of three Dy2 complexes through keto-enol tautomerism of the o-vanillin picolinoylhydrazone ligand. Inorganic chemistry 2011, 50(19): 9705-9713.
53. Goura J, Guillaume R, Riviere E, Chandrasekhar V. Hexanuclear, heterometallic, Ni(3)Ln(3) complexes possessing O-capped homo- and heterometallic structural subunits: SMM behavior of the dysprosium analogue. Inorganic chemistry 2014, 53(15): 7815-7823.
54. Benelli C, Gatteschi D. Magnetism of lanthanides in molecular materials with transition-metal ions and organic radicals. Chemical Reviews 2002, 102(6): 2369-2388.
213
55. Feltham HL, Clerac R, Ungur L, Vieru V, Chibotaru LF, Powell AK, et al. Synthesis and magnetic properties of a new family of macrocyclic M(II)3Ln(III) complexes: insights into the effect of subtle chemical modification on single-molecule magnet behavior. Inorganic chemistry 2012, 51(20): 10603-10612.
56. Costes J-P, Dahan F, Dupuis A, Laurent J-P. Experimental evidence of a ferromagnetic ground state (S= 9/2) for a dinuclear Gd (III)− Ni (II) complex. Inorganic chemistry 1997, 36(19): 4284-4286.
57. Chen Q-Y, Luo Q-H, Zheng L-M, Wang Z-L, Chen J-T. A Study on the Novel d− f Heterodinuclear Gd (III)− Ni (II) Cryptate: Synthesis, Crystal Structure, and Magnetic Behavior. Inorganic chemistry 2002, 41(3): 605-609.
58. Atanasov M, Comba P, Helmle S, Muller D, Neese F. Zero-field splitting in a series of structurally related mononuclear Ni(II)-bispidine complexes. Inorganic chemistry 2012, 51(22): 12324-12335.
59. Osa S, Kido T, Matsumoto N, Re N, Pochaba A, Mrozinski J. A tetranuclear 3d− 4f single molecule magnet:[CuIILTbIII (hfac) 2] 2. Journal of the American Chemical Society 2004, 126(2): 420-421.
60. Horii Y, Katoh K, Cosquer G, Breedlove BK, Yamashita M. Weak Dy(III)-Dy(III) Interactions in Dy(III)-Phthalocyaninato Multiple-Decker Single-Molecule Magnets Effectively Suppress Magnetic Relaxation. Inorganic chemistry 2016, 55(22): 11782-11790.
61. Katoh K, Horii Y, Yasuda N, Wernsdorfer W, Toriumi K, Breedlove BK, et al. Multiple-decker phthalocyaninato dinuclear lanthanoid(iii) single-molecule magnets with dual-magnetic relaxation processes. Dalton transactions 2012, 41(44): 13582.
62. Liddle ST, van Slageren J. Improving f-element single molecule magnets. Chemical Society reviews 2015, 44(19): 6655-6669.
63. Chilton NF, Collison D, McInnes EJ, Winpenny RE, Soncini A. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nature communications 2013, 4: 2551.
214
64. Bartolomé J, Filoti G, Kuncser V, Schinteie G, Mereacre V, Anson CE, et al. Magnetostructural correlations in the tetranuclear series of{Fe3LnO2}butterfly core clusters: Magnetic and Mössbauer spectroscopic study. Physical Review B 2009, 80(1).
65. Cho KJ, Ryu DW, Lim KS, Lee WR, Lee JW, Koh EK, et al. Syntheses, structures, and magnetic properties of cyano- and phenoxide-bridged Fe(III)-Mn(III) tetrameric assemblies formed by blocked fac-Fe tricyanide with aliphatic rings. Dalton transactions 2013, 42(16): 5796-5804.
66. Luis F, Bartolomé J, Fernández J, Tejada J, Hernández J, Zhang X, et al. Thermally activated and field-tuned tunneling in Mn 12 Ac studied by ac magnetic susceptibility. Physical Review B 1997, 55(17): 11448.
67. Krupskaya Y, Alfonsov A, Parameswaran A, Kataev V, Klingeler R, Steinfeld G, et al. Interplay of Magnetic Exchange Interactions and Ni S Ni Bond Polynuclear Nickel (II) Complexes. ChemPhysChem 2010, 11(9): 1961-1970.
68. Nemec I, Herchel R, Svoboda I, Boca R, Travnicek Z. Large and negative magnetic anisotropy in pentacoordinate mononuclear Ni(ii) Schiff base complexes. Dalton transactions 2015, 44(20): 9551-9560.
69. Lomjanský D, Varga F, Rajnák C, Moncoľ J, Boča R, Titiš J. Redetermination of Zero-Field Splitting in [Co(qu)2Br2] and [Ni(PPh3)2Cl2] Complexes. Nova Biotechnologica et Chimica 2016, 15(2).
70. Li M, Wu H, Yang Q, Ke H, Yin B, Shi Q, et al. Experimental and Theoretical Interpretation on the Magnetic Behavior in a Series of Pentagonal‐Bipyramidal DyIII Single‐Ion Magnets. Chemistry–A European Journal 2017, 23(70): 17775-17787.
71. Zhang X, Liu S, Vieru V, Xu N, Gao C, Wang BW, et al. Coupling Influences SMM Properties for Pure 4 f Systems. Chemistry–A European Journal 2018, 24(23): 6079-6086.
72. 余蕙茹(2018),「銅-鑭系金屬團簇之合成,結構及磁性研究」,國立成功大學化學研究所碩士論文。
215
73. Gupta SK, Rajeshkumar T, Rajaraman G, Murugavel R. An air-stable Dy(iii) single-ion magnet with high anisotropy barrier and blocking temperature. Chemical Science 2016, 7(8): 5181-5191.
74. Chen YC, Liu JL, Ungur L, Liu J, Li QW, Wang LF, et al. Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. J Am Chem Soc 2016, 138(8): 2829-2837.
75. Guettas D, Montigaud V, Garcia GF, Larini P, Cador O, Le Guennic B, et al. Fine Control of the Metal Environment within Dysprosium-Based Mononuclear Single-Molecule Magnets. European Journal of Inorganic Chemistry 2018, 2018(3-4): 333-339.
76. Lyu D-P, Zheng J-Y, Li Q-W, Liu J-L, Chen Y-C, Jia J-H, et al. Construction of lanthanide single-molecule magnets with the “magnetic motif” [Dy(MQ)4]−. Inorganic Chemistry Frontiers 2017, 4(11): 1776-1782.
77. Sun L, Wei S, Zhang J, Wang W, Chen S, Zhang Y, et al. Isomeric ligands enhance the anisotropy barrier within nine-coordinated {Dy2} compounds. Journal of Materials Chemistry C 2017, 5(36): 9488-9495.
78. Meng YS, Xu L, Xiong J, Yuan Q, Liu T, Wang BW, et al. Low-Coordinate Single-Ion Magnets by Intercalation of Lanthanides into a Phenol Matrix. Angewandte Chemie 2018, 57(17): 4673-4676.
79. Zhang L, Jung J, Zhang P, Guo M, Zhao L, Tang J, et al. Site-Resolved Two-Step Relaxation Process in an Asymmetric Dy2 Single-Molecule Magnet. Chemistry 2016, 22(4): 1392-1398.
80. Bayly SR, Xu Z, Patrick BO, Rettig SJ, Pink M, Thompson RC, et al. dlf complexes with uniform coordination geometry: Structural and magnetic properties of an LnNi2 core supported by a heptadentate amine phenol ligand. Inorganic chemistry 2003, 42(5): 1576-1583.
81. Li XL, Min FY, Wang C, Lin SY, Liu Z, Tang J. Utilizing 3d-4f magnetic interaction to slow the magnetic relaxation of heterometallic complexes. Inorganic chemistry
216
2015, 54(9): 4337-4344.
82. Xu Z, Read PW, Hibbs DE, Hursthouse MB, Abdul Malik K, Patrick BO, et al. Coaggregation of paramagnetic d-and f-block metal ions with a podand-framework amine phenol ligand. Inorganic chemistry 2000, 39(3): 508-516.
83. Shiga T, Ohba M, Ōkawa H. A series of trinuclear CuIILnIIICuII complexes derived from 2, 6-di (acetoacetyl) pyridine: Synthesis, structure, and magnetism. Inorganic chemistry 2004, 43(14): 4435-4446.
84. Upadhyay A, Komatireddy N, Ghirri A, Tuna F, Langley SK, Srivastava AK, et al. Synthesis and magnetothermal properties of a ferromagnetically coupled Ni(II)-Gd(III)-Ni(II) cluster. Dalton transactions 2014, 43(1): 259-266.
85. Yao M-X, Lu X-Y, Zhu Z-X, Deng X-W, Jing S. Synthesis, structures and magnetism of a series of dinuclear and one-dimensional Ni–Ln complexes: single-molecule magnetic behavior in one-dimensional nitrate-bridged Dy analogue. New Journal of Chemistry 2015, 39(11): 8356-8363.
86. Pasatoiu TD, Sutter JP, Madalan AM, Fellah FZ, Duhayon C, Andruh M. Preparation, crystal structures, and magnetic features for a series of dinuclear [Ni(II)Ln(III)] Schiff-base complexes: evidence for slow relaxation of the magnetization for the Dy(III) derivative. Inorganic chemistry 2011, 50(13): 5890-5898.
87. Costes J-P, Vendier L. Structural and Magnetic Studies of New NiII-LnIII Complexes. European Journal of Inorganic Chemistry 2010, 2010(18): 2768-2773.
88. Sakamoto S, Fujinami T, Nishi K, Matsumoto N, Mochida N, Ishida T, et al. Carbonato-bridged Ni(II)2Ln(III)2 (Ln(III) = Gd(III), Tb(III), Dy(III)) complexes generated by atmospheric CO2 fixation and their single-molecule-magnet behavior: [(mu4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH or H2O)Ln(III)(NO3)}2].solvent [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato]. Inorganic chemistry 2013, 52(12): 7218-7229.
89. Yamaguchi T, Sunatsuki Y, Ishida H, Kojima M, Akashi H, Re N, et al. Synthesis, Structures, and Magnetic Properties of Face-Sharing Heterodinuclear Ni(II)−Ln(III) (Ln = Eu, Gd, Tb, Dy) Complexes. Inorganic chemistry 2008, 47(13): 5736-5745.
校內:2023-08-20公開