| 研究生: |
陳音戎 Chen, Yin-Rong |
|---|---|
| 論文名稱: |
膠原蛋白基質與奈米粒子填充物對玻璃離子體的生物相容性與機械性質之影響 The effect of collagen matrix and nanoparticle fillers to the biocompatibility and mechanical properties of a novel glass ionomer cements |
| 指導教授: |
謝達斌
Shieh, Dar-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 玻璃離子體 、奈米氧化鋅 、膠原蛋白 、機械性質 、生物相容性 |
| 外文關鍵詞: | glass ionomer cements, zinc oxide nanoparticle, collagen, mechanical properties, biocompatibility |
| 相關次數: | 點閱:84 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
玻璃離子體為一牙科填補材料,可用於修復牙齒酸蝕或是填補非受力區的齲齒,其甚至可用於牙髓或牙周手術時硬組織的修復。然而,玻璃離子體卻因其相對較差的機械性質而限制了它的臨床應用性;另外,它可能會釋放出鋁離子而造成細胞毒性。因此,許多研究想藉由改良其組成成份來改善上述之缺點。膠原蛋白可以藉由調節多樣化的細胞功能來提高生物相容性,而添加奈米氧化鋅粒子於水泥中則被證實可提高其機械性質。因此,在本篇研究裡試圖去探討添加膠原蛋白及奈米氧化鋅粒子於玻璃離子體中對於其機械性質及生物相容性的影響。在本篇研究裡,利用融膠凝膠法來合成奈米氧化鋅粒子,所得產物會經由SEM,TEM,XRD及FTIR定性。由實驗結果可知,添加重量體積百分濃度為2%的奈米氧化鋅粒子及0.01% 膠原蛋白於玻璃離子體中的確可以增加其對徑抗張強度及抗壓強度,並且此添加可以提升其生物相容性及抗菌性。
Glass ionomer cements were used as filling materials for tooth erosion or caries in non-force bearing area or as hard-tissue repair materials for defects in endodontic and periodontal surgeries. However, their poor mechanical properties limited their clinical applications and their cytotoxicity was attributed to the leakage of chemical ingredients such as aluminium. Many attempts have been made to modify their formulation to prevent these drawbacks. Collagen had been demonstrated to enhance biocompatibility via regulating diverse cellular functions and nano-ZnO particles had been incorporated into the concrete to enhance its mechanical properties. I investigated the effects on the mechanical properties and biocompatibility after incorporating collagen and nano-ZnO particles in the composition of glass ionomer cements in the present study. The sol-gel method was used to fabricate the nano-ZnO particles and the products were under further characterization such as SEM, TEM, XRD and FTIR. In the mechanical properties test, the results showed the glass ionomer cements with incorporation of both 2 wt% nano-ZnO particles and 0.01 wt% collagen exhibited the best diametral tensil strength and compressive strength. Besides, the incorporation enhanced the biocompatibility in the biocompatibility assay and elevated antibacterial properties in the antibacterial test. Therefore, the developed glass ionomer cements with enhanced mechanical properties had the potential to be applied in the clinical practice.
Andersson, Ö.H., and Dahl, J. (1994). Aluminium release from glass ionomer cements during early water exposure in vitro. Biomaterials 15, 882-888.
Arefi, M.R., and Rezaei-Zarchi, S. (2012). Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious Composites. International Journal of Molecular Sciences 13, 4340-4350.
Baruah, S., and Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials 10, 013001.
Braem, M., Finger, W., Van Doren, V.E., Lambrechts, P., and Vanherle, G. (1989). Mechanical properties and filler fraction of dental composites. Dental Materials 5, 346-349.
Bresciani, E., Barata, T., Fagundes, T.C., Adachi, A., Terrin, M.M., and Navarro, M.F. (2004). Compressive and diametral tensile strength of glass ionomer cements. J Appl Oral Sci 12, 344-348.
Cate, T. (1994). Oral histology: Development, Structure, and Function
4edn.
Chang, H.J., Wu, C.M., Chang, Y.C., Fanchiang, J.C., Shieh, D.B., and Wong, T.Y. (2009). Collagen enhances compatibility and strength of glass ionomers. J Dent Res 88, 449-454.
Crosera, M., Bovenzi, M., Maina, G., Adami, G., Zanette, C., Florio, C., and Filon Larese, F. (2009). Nanoparticle dermal absorption and toxicity: a review of the literature. International archives of occupational and environmental health 82, 1043-1055.
Culbertson, B.M. (2001). Glass-ionomer dental restoratives. Progress in polymer science 26, 577-604.
Davidson, C.L., and Ivar A. Mjor (1999). advances in glass ionomer cements (Germany: Quintessence Publishing Co, Inc).
El Mallakh, B., and Sarkar, N. (1990). Fluoride release from glass-ionomer cements in de-ionized water and artificial saliva. Dental Materials 6, 118-122.
Gage, J.P., Francis, M.J.O., and Triffitt, J.T. (1989). Collagen and dental matrices, 1st edn (Butterworth & Co. ).
Gelse, K. (2003). Collagens—structure, function, and biosynthesis. Advanced Drug Delivery Reviews 55, 1531-1546.
Habelitz, S., Balooch, M., Marshall, S.J., Balooch, G., and Marshall, G.W. (2002). In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. Journal of structural biology 138, 227-236.
Huang, Z., Zheng, X., Yan, D., Yin, G., Liao, X., Kang, Y., Yao, Y., Di Huang, a., and Hao, B. (2008). Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24, 4140-4144.
Hulmes, D.J., and Miller, A. (1981). Molecular packing in collagen
Nature 293, 234-239.
Hurrell-Gillingham, K., Reaney, I.M., Brook, I., and Hatton, P. (2005). Novel Fe2O3-containing glass ionomer cements: Glass characterisation. Key Engineering Materials 284, 799-802.
Jones, D.L., and Kochian, L.V. (1997). Aluminum interaction with plasma membrane lipids and enzyme metal binding sites and its potential role in Al cytotoxicity. Febs Letters 400, 51-57.
Jones, N., Ray, B., Ranjit, K.T., and Manna, A.C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS microbiology letters 279, 71-76.
Kan, K.C., Messer, L.B., and Messer, H.H. (1997). Variability in Cytotoxicity and Fluoride Release of Resin-modified Glass-ionomer Cements. J Dent Res 76, 1502-1507.
Kerby, R., and Bleiholder, R. (1991). Physical properties of stainless-steel and silver-reinforced glass-ionomer cements. Journal of Dental Research 70, 1358-1361.
Lan, W., Lan, W., Wang, T., Lee, Y., Tseng, W., Lin, C., Jeng, J., and Chang, M. (2003). Cytotoxicity of conventional and modified glass ionomer cements. Operative dentistry 28, 251.
Lee, S., Wang, C., Chen, D., and Lai, Y. (2000). Retentive and compressive strengths of modified zinc oxide–eugenol cements. J Dent 28, 69-75.
Linde, A., and Robins, S.P. (1988). Quantitative assessment of collagen crosslinks in dissected predentin and dentin
Collagen Rel Res 8, 443-450.
Moshaverinia, A., Roohpour, N., Chee, W.W.L., and Schricker, S.R. (2011). A review of powder modifications in conventional glass-ionomer dental cements. Journal of Materials Chemistry 21, 1319.
MR Arefi , and Rezaei-Zarchi, S. (2012). Synthesis of Zinc Oxide Nanoparticles and Their Effect on the Compressive Strength and Setting Time of Self-Compacted Concrete Paste as Cementitious composites. Int J Mol Sci 13, 4340-4350.
Nicholson, J., and Croll, T. (1997). Glass-ionomer cements in restorative dentistry. Quintessence international (Berlin, Germany: 1985) 28, 705.
Nicholson, J.W., Braybrook, J.H., and Wasson, E.A. (1991). The biocompatibility of glass-poly (alkenoate)(Glass-Ionomer) cements: A review. Journal of Biomaterials Science, Polymer Edition 2, 277-285.
Nomoto, R., Komoriyama, M., McCabe, J.F., and Hirano, S. (2004). Effect of mixing method on the porosity of encapsulated glass ionomer cement. Dental Materials 20, 972-978.
Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M., Doğan, S., Avrutin, V., Cho, S.J., and Morkoc, H. (2005). A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98, 041301.
Padilla, A., Vázquez, A., Vázquez-Polo, G., Acosta, D.R., and Castaño, V.M. (1990). Porosimetry studies on polyacrylic acid-ZnO cements Journal of Materials Science: Materials in Medicine 1, 154-156.
Padmavathy, N., and Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Science and Technology of Advanced Materials 9, 035004.
Riahi, S., and Nazari, A. (2011). Physical, mechanical and thermal properties of concrete in different curing media containing ZnO2 nanoparticles. Energy and Buildings.
S, C., BG, L., and Wilson, A. (1976). Glass ionomer cements: chemistry of erosion. J Dent Res 55, 1032-1041.
Schedle, A., Franz, A., Rausch-Fan, X., Spittler, A., Lucas, T., Samorapoompichit, P., Sperr, W., and Boltz-Nitulescu, G. (1998). Cytotoxic effects of dental composites, adhesive substances, compomers and cements. Dental Materials 14, 429-440.
Shellis RP, and RM., D. (1994). Studies on the cariostatic mech-anisms of fluoride. Int Dent J 44, 263-273.
Sun, J., Weng, Y., Song, F., and Xie, D. (2011). In Vitro Cellular Responses of Human Dental Primary Cells to Dental Filling Restoratives. Journal of Biomaterials and Nanobiotechnology 2, 267-280.
T, N., and FM, W. (2000). Interaction of water-soluble collagen with poly(acrylic acid). Biomaterials 4, 415-419.
Tokumoto, M.S., Pulcinelli, S.H., Santilli, C.V., and Briois, V. (2003). Catalysis and temperature dependence on the formation of ZnO nanoparticles and of zinc acetate derivatives prepared by the sol-gel route. The Journal of Physical Chemistry B 107, 568-574.
Vermeersch, G., Leloup, G., Delmee, M., and Vreven, J. (2005). Antibacterial activity of glass–ionomer cements, compomers and resin composites: relationship between acidity and material setting phase. Journal of oral rehabilitation 32, 368-374.
Von Recum, A., and Van Kooten, T. (1996). The influence of micro-topography on cellular response and the implications for silicone implants. Journal of Biomaterials Science, Polymer Edition 7, 181-198.
Walls, A. (1986). Glass polyalkenoate (glass-ionomer) cements: a review. J Dent 14, 231-246.
Walters, C., and Eyre, D.R. (1983). Collagen crosslinks in human dentin: increasing content of hydroxypyridinium residues with age. Calcified tissue international 35, 401-405.
Weiner, S., and Wagner, H.D. (1998). THE MATERIAL BONE: Structure-Mechanical Function Relations. Annu Rev Mater Sci 28, 271-298.
Wilson, A.D., and Kent, B.E. (1971). The glass‐ionomer cement, a new translucent dental filling material. Journal of Applied Chemistry and Biotechnology 21, 313-313.
Xie, Y., He, Y., Irwin, P.L., Jin, T., and Shi, X. (2011). Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Applied and environmental microbiology 77, 2325-2331.
Yli-Urpo, H., Närhi, M., and Närhi, T. (2005). Compound changes and tooth mineralization effects of glass ionomer cements containing bioactive glass (S53P4), an in vivo study. Biomaterials 26, 5934-5941.