簡易檢索 / 詳目顯示

研究生: 許鈞湞
Hsu, Chun-Chen
論文名稱: 精簡型AI算力中心的節能效益之探討
Justification on Energy Saving of the Modular AI Computing Center
指導教授: 呂執中
Lyu, Jr-Jung
廖俊雄
Liao, Chun-Hsiung
學位類別: 碩士
Master
系所名稱: 管理學院 - 高階管理碩士在職專班(EMBA)
Executive Master of Business Administration (EMBA)
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 80
中文關鍵詞: AI 算力中心精簡型數據中心低碳排放PUEISO 14064ISO 50001
外文關鍵詞: Modular AI Computing Center, High-Performance Computing (HPC), Energy Efficiency, Carbon Emissions Reduction, Liquid Cooling, ISO 50001, ISO 14064, Power Usage Effectiveness (PUE)
相關次數: 點閱:13下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著人工智慧(Artificial Intelligence, AI)與大數據技術的迅速擴展,大型語言模型(LLM)、生成式AI與深度學習應用也跟著快速成長,推動企業對高效能運算資源的需求急遽上升,導致全球AI算力中心的興建速度加快。然而,AI負載相較於傳統業務運算對電力密度、冷卻設計與資源配置的要求更為嚴苛,衍生出高能耗、高碳排與建置期拉長等複合性管理挑戰。
    在此背景下,如何提升能源使用效率、降低運營碳足跡,已成為AI基礎建設管理的首要課題。節能效益不僅攸關企業運營成本與碳足跡,更與系統建置方式密切相關。過去傳統數據中心強調規模與擴充性,但在AI算力中心的需求下,反而暴露出電力供應不及、機房冷卻不足與部署時間過長等瓶頸。因此,本研究提出一項管理假設:精簡型AI算力中心的高效率節能設計,不僅有助於減碳與降低營運成本,更能有效縮短施工建置週期,提升專案整合與交付效率。
    本研究以「AI算力中心的節能效益與建置效率之整合性關聯」為主軸,探討精簡型AI算力中心的模組化設計特性與能源管理功能,以H科技公司的精簡型AI算力中心為研究對象,並透過在V國部署建置的個案分析,探討精簡型AI算力中心在能源消耗、碳排放強度(CUE)與運營成本等層面的異同,進行估算其投資報酬率(ROI)與潛在減碳效益之影響,以及透過 ISO 50001能源管理與ISO 14064溫室氣體排放標準,評估其節能效益,再延伸至建置效率與營運管理層面的綜合分析。
    精簡型AI算力中心因具備模組化設計、靈活配置與高效率能源管理系統,可成為AI算力中心實現節能減碳目標的重要解決方案。此類架構可針對AI工作負載進行動態調整,降低不必要的能源浪費,進而提升單位能效與PUE(Power Usage Effectiveness)表現,有助於企業邁向永續營運與ESG指標的達成。更重要的是,高效率的節能設計往往與系統預組裝、空間整合及冷卻優化等工程手法相輔相成,使得整體AI算力中心建置流程更加簡化。透過預製化模組與標準化配置,可大幅減少現地施工時間與錯誤率,縮短從規劃到啟用的時程,降低建置過程中的協調與整合壓力。本研究從建設成本、運營效益、能源效率與碳排放角度,評估精簡型AI算力中心在未來高算力需求下的可行性與管理價值,其研究結果可成為日後AI算力中心永續規劃與建設效率優化的參考依據。

    In response to the exponential growth of Artificial Intelligence (AI) applications and big data analytics, enterprises are rapidly expanding their demand for high-performance computing (HPC) infrastructure. Emerging technologies such as large language models (LLMs), generative AI, and deep learning require robust, scalable, and energy-efficient computing environments. This demand has accelerated the construction of AI computing centers worldwide. However, conventional data center models struggle to meet the unique requirements of AI workloads-particularly in power density, cooling capacity, and rapid deployment-resulting in significant challenges such as excessive energy consumption, elevated carbon emissions, and prolonged construction schedules.
    This study explores the potential and benefits of the modular AI computing centers. It is assumed that integrated relationship between energy efficiency and construction performance in AI computing centers, with a particular focus on modularized architectures, could be expected. Through the application of international standards such as ISO 50001 and ISO 14064, the empiral study aims to assess how streamlined, prefabricated AI computing solutions could support energy savings, enhance carbon management, and improve deployment efficiency in a representative case study. A practical implementation case in Country V is used to demonstrate real-world applicability.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究範圍 3 第四節 研究流程 5 第二章 文獻探討 7 第一節 AI算力中心之定義 7 第二節 AI算力中心之架構特性 10 第三節 永續政策與標準應用 19 第四節 小結 21 第三章 研究方法 23 第一節 AI算力中心傳統與精簡型架構 23 第二節 能效指標與評估方法 29 第四章 個案研究分析 34 第一節 個案簡介 34 第二節 實證研究與應用案例 36 第三節 同質性方案功能效益比較 38 第四節 能源效率與管理機制 46 第五節 碳排放量與潛在減碳效益 49 第六節 成本效益與投資回收分析 51 第五章 研究結論 53 第一節 研究發現 53 第二節 未來研究方向與建議 62 第六章 參考文獻 66

    一.中文文獻
    1.工業技術研究院(2023),模組化AI算力模組建置效益報告。
    2.環保署(2023),臺灣地區用電排放係數公告。
    二.英文文獻
    1.IEA. (2023). Electricity consumption in data centers and AI workloads.
    2.IEA (2023). Data Centres and Data Transmission Networks Report.
    3.IEA. (2023). Data centers and energy – Analysis and forecast.
    4.IEA. (2023). Data Centres and Energy Report. International Energy Agency.
    5.IEA. (2024). Data Centres and Data Transmission Networks. International Energy Agency.
    6.ISO. (2006) ISO 14040. Environmental management - Life cycle assessment - Principles and framework.
    7.ISO. (2018 & 2019) ISO 14064-1: Greenhouse gases - Part 1: Specification with guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals.
    8.ISO. (2018). ISO 50001: Energy management systems — Requirements with guidance for use.
    9.ISO. (2018). ISO 50001: Energy management systems — Requirements with guidance for use. International Organization for Standardization.
    10.GHG Protocol. (2015). Corporate Accounting and Reporting Standard.
    11.Kaplan, J. (2020). Designing Containerized Data Centers for Speed and Efficiency. DataCenter Frontier.
    12.Gartner. (2022). Modular and Edge Data Center Strategies for AI Workloads.
    13.Gartner. (2023). Trends in AI Infrastructure and Supercomputing Investments.
    14.Skidmore, Z. (2025, April 11). IEA: Data center energy consumption set to double by 2030 to 945 TWh. Data Center Dynamics.
    15.Uptime Institute. (2022). Annual Global Data Center Survey.
    16.Uptime Institute. (2022). Annual Data Center Survey Report.
    17.Uptime Institute. (2023). Annual Data Centre Survey Report.
    18.ASHRAE Technical Committee 9.9. (2021). Thermal Guidelines for Data Processing Environments.
    19.ASHRAE (2022). Liquid Cooling Guidelines for Datacom Equipment Centers.
    20.Future Facilities. (2022). The Role of CFD in High-Density Modular Data Center Planning.
    21.The Green Grid (2020). PUE: A Comprehensive Examination of the Metric.
    22.The Green Grid. (2022). PUE: A comprehensive examination of data center energy efficiency.
    23.The Green Grid. (2022). PUE: A Comprehensive Guide to Data Center Energy Efficiency.
    24.Rackcdn. (n.d.). HPE Modular Data Center Brochure.
    25.HPE. (2023). HPE AI Mod POD and Edge Solutions. HPE Solution Briefs and Product Pages.
    26.HPE. (2023). HPE POD Economic Value Report.
    27.HPE (2023). EcoPOD Deployment Whitepaper.
    28.HPE (2023). Performance Optimized Data Center (POD) Whitepaper.
    29.HPE. (2023). HPE InfoSight: AI-driven intelligence for infrastructure.
    30.HPE. (2023). Sustainable IT with HPE GreenLake and Modular Data Centers.
    31.HPE. (2023). HPE GreenLake and AI-enabled energy optimization for modular data centers.
    32.HPE. (2023). HPE GreenLake Sustainability Dashboard and Modular POD Carbon Reduction Metrics.
    33.HPE. (2024). Liquid Cooling for AI Workloads.
    34.HPE. (2024). HPE and Danfoss partner to curb data center energy consumption and reuse excess heat.
    35.Zeiler, J. (2024). Liquid cooling: a cool approach for AI.
    36.IBM. (2022). Portable Modular Data Center (PMDC) Architecture Brief.
    37.IBM (2022). Modular Data Center Solutions Overview. IBM Corporation.
    38.IBM. (2023). AIOps and Modular Infrastructure ROI White Paper. IBM Research.
    39.IBM Research. (2023, October 18). Systems Two Phase Cooling - ARPA-E COOLERCHIPS Kickoff Meeting (Conference Presentation Abstract).
    40.IBM Research. (2023). AI for Data Center Efficiency: Joint Solutions with NTT. IBM Publications.
    41.IBM. (2023). IBM's approach to sustainable hybrid cloud infrastructure. IBM Research Publications.
    42.IBM. (2023). AI for energy optimization in hybrid cloud environments.
    43.IBM. (2023). IBM Envizi ESG Suite - ISO-aligned Carbon Management. IBM Research.
    44.Gooding, M. (2024, April 17). IBM claims its data centers run on 74 percent renewable energy. Data Center Dynamics.
    45.Oracle Corp. (2016). Oracle’s Jordan, Utah, Data Center – Very Cool. (Karen Riccio, DataCenterKnowledge, July 11, 2016)
    46.Oracle. (2020). Sun Modular Datacenter and Sustainable Deployment
    47.Oracle. (2022). Oracle Cloud Modular Infrastructure Brief.
    48.Oracle. (2022). Oracle Cloud Infrastructure and Sustainability Goals.
    49.Oracle. (2022). Oracle Cloud Infrastructure Sustainability Strategy.
    50.Oracle. (2022). Oracle Cloud Infrastructure and Sustainability Practices.
    51.Oracle Cloud Infrastructure. (2022). Simplifying Data Center Energy Control.
    52.Oracle (2023). Cloud@Customer Deployment Model. Oracle Technical Brief.
    53.Mann, T. (2024, September 11). Oracle wants to power 1GW datacenter with trio of tiny nuclear reactors.
    54.Solomon, S. (2024, December 9). Sustainable by design: Next-generation datacenters consume zero water for cooling.
    55.Microsoft (2022). Azure Modular Data Center Documentation.
    56.Microsoft Azure. (2022). Modular Data Center Deployment Strategy.
    57.Microsoft Azure. (2022). Data center digital twins for intelligent cooling.
    58.Microsoft. (2022). Microsoft Sustainability Commitments and Carbon Negative Roadmap.
    59.Microsoft Azure. (2022). Energy efficiency and carbon awareness in Microsoft’s data center operations.
    60.Microsoft. (2022). Microsoft Carbon Negative Strategy and Emissions Transparency.
    61.DeepMind. (2016). DeepMind AI reduces Google data centre cooling bill by 40%.
    62.Google (2022). Achieving Carbon-Free Energy. Sustainability Report.
    63.Google. (2023). Data Center Efficiency and AI Integration.
    64.Google. (2023). 24/7 Carbon-Free Energy by 2030.
    65.Google. (2023). Carbon-free energy for data centers.
    66.Google. (2023). Environmental Report - Carbon-Free Energy 24/7.
    67.Google (2024). Sustainable Data Centers and TPU Systems. Google Sustainability Reports.
    68.AWS. (2023). AWS Edge Infrastructure and Cost Optimization.
    69.AWS (2023). AWS Local Zones and Outposts Deployment Guide.
    70.Amazon. (2023). AWS Sustainability Report.
    71.Amazon. (2023). AWS Sustainability and Renewable Energy Programs.
    72.Amazon. (2023). AWS Sustainability Dashboard and Energy Reports.
    73.Amazon. (2023). Customer Carbon Footprint Tool Overview.
    74.Cisco Systems. (2020). Data Center Fundamentals.
    75.Cisco. (2021). Modular Data Center Design and Deployment.
    76.Kaplan, J. (2022). AI Infrastructure: A Guide to Building AI-Ready Data Centers.
    77.Intel. (2023). Design Considerations for High-Density AI Data Centers.
    78.McKinsey & Company. (2023). The Race for AI Compute: Strategies for Scalable Infrastructure.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE