| 研究生: |
朱信澈 Chu, Shin-Che |
|---|---|
| 論文名稱: |
鋼筋混凝土梁在扭矩與剪力組合載重作用下之行為研究 The Behavoir of Reinforced Concrete Beam Subjected to Combined Torsion and Shear |
| 指導教授: |
方一匡
Fang, I-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 扭矩與剪力的比值 、壓力區深度 |
| 外文關鍵詞: | compression zone depth, ratio of torsion and shear |
| 相關次數: | 點閱:50 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本研究旨在探討鋼筋混凝土梁在承受扭矩與剪力之組合載重下,試體之裂縫型式、極限扭矩強度、扭轉勁度、表面應變與承力機構的變化,並藉由試體內、外部應變的變化驗證試體承力機構的改變。
本研究共規劃四根實心斷面與五根空心斷面之鋼筋混凝土試體( MPa),斷面尺寸為350×500 mm。主要考慮變數為扭矩-剪力比值(T/V)、空心斷面與實心斷面。
試驗結果顯示:(1)當試體所承受之T/V比例值減小時,承力機構會由TYPE Ⅰ之空間桁架模式,逐漸轉變成TYPE Ⅱ之斜彎矩模式與TYPE Ⅲ之平面桁架模式;(2)TYPE Ⅰ試體在達極限強度時,承受T+V組合力作用面之表面平均主張應變與表面平均主壓應變,皆相當接近由軟化桁架模式所計算出來的理論值,並不會因為試體承受的T/V比例值改變或是實心與空心斷面的效應而有明顯的差異;(3)配置低鋼筋量的實心斷面試體在承受高T/V比例作用下,由於側向曲率的作用,導致壓力區深度增加,使得極限扭矩強度會略微提升,而配置低鋼筋量的空心斷面試體在承受高T/V比例作用下,由於壁厚的限制無法進一步提供更多的混凝土來抵抗外力,所以極限扭矩強度無法向上提升;(4)當試體承受之T/V比例減小,翹曲效應亦隨之減小,且試體於T+V作用面的壓力區深度會逐漸變大;(5)TYPE Ⅰ試體的承力機構係以薄壁管類比承受扭矩與剪力之組合載重,其壓力區深度由大到小依序為T+V、T與T-V作用面,而TYPE Ⅱ試體之破壞模式屬於斜彎矩型,故不適用薄壁管理論來探討其承力行為。
none
參考文獻
1. Lessig, N. N.,“Determination of Load-Carrying Capacity of Rectangular Reinforced Concrete Elements Subjected to Flexure and Torsion,” Trudy No. 5, Institut Betona i Zhelezobetona (Concrete and Reinforced Concrete Institute), Moscow, 1959, pp. 5-28 (in Russian). Translated by Portland Cement Association, Foreign Literature Study No. 371. Available from S.L.A. Translation Center, The John Crerar Library Translation Center, 35 W. 33rd St. Chicago, Illinois 60616.
2. State Committee on Construction of the USSR Council of Ministers, ”Structural Standards and Regulations,” SniP Ⅱ-B, 1-62, State Publishing Offices for Literature on Structural Engineering, Architecture and Structural Materials, Moscow, 1962 (in Russian).
3. Yudin, V. K., “Determination of the Load-Carrying Capacity of Rectangular Reinforced Concrete Elements Subjected to Combined Torsion and Bending,” Beton I Zhelezobeton (Concrete and Reinforced Concrete), Moscow, N0. 6, June 1962, pp. 265-269 (in Russian). Translated by Portland Cement Association, Foreign Literature Study N0. 377.
4. Collins, M. P.; Walsh, P. F.; Archer, F. E.; and Hall, A. S., “Reinforced Concrete Beams Subjected to Combined Torsion, Bending and Shear,” UNICIV Report, No. R-14, University of New South Wales, October 1965.
5. Collins, M. P.; Walsh, P. F.; Archer, F. E.; and Hall, A. S., “Ultimate Strength of Reinforced Concrete Beams Subjected to Combined Torsion, and Bending,” Torsion of Structure, SP-18, American Concrete Institute, Detroit, 1968, pp. 279-420.
6. Elfgren, L., “Reinforced Concrete Beams Loaded in Combined Torsion, Bending and Shear,” Publication 71:3, Division of Concrete Structures, Chalmers University of Technology, Goteborg, Sweden, 1972.
7. Rausch, E., “Design of Reinforced Concrete in Torsion”(Berechnung des Eisenbetons gegen Verdrehung), Ph.D. thesis, Technische Hochschule, Berlin, 1929, 53 pp.
8. Lempert, P. and B. Thurlimann,“Torsionsversuche an Stahlbetonbalken”
(Torsion Tests of Reinforced Concrete Beams), Bericht Nr. 6506-2, June 1968; “Torsion-Biege-Versuche an Stahlbetonbalken”(Torsion-
Bending Tests on Reinforced Concrete Beams), Bericht Nr. 6506-3, January 1969, Institut fur Baustatik, ETH, Zurich. (in German)
9. Elfgren, L., I. Karlsson, and A. Losberg, ”Torsion-Bending-Shear Interaction for Concrete Beams,” Journal of the Structural Division, ASCE, Vol.100, No. ST 8, August 1974, pp. 1657-1676.
10. Ewida A. A. and McMullen A. E., ”Torsion-shear-flexure interaction in reinforced concrete members” Magazine of Concrete Research, Vol. 33, No.115: June 1981.
11. Rahal K. N. and Collins M. P., “ Analysis of Sections Subjected to Combined Shear and Torsion- A Theoretical Model” ACI Structural Journal July-August 1995.
12. Tarek Mohammed, “Experimental Investigation of The Shear Flow Zone In Torsional Members.” Master Thesis, Department of Civil Engineering, University of Missouri-Rolla, Missouri (1998)
13. 賴裕光, 「鋼筋混凝土樑受純扭矩作用下剪力流有效厚度之研究」 , 碩士論文,國立成功大學土木工程研究所,臺南(1998)。
14. ACI Standard 318-02, Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318-02), American Concrete Institute, Detroit, 2002, pp 139-154.
15. Saint-Venant, B .de, M’emoire sur la torsion des prismes (li a` l’Acad’emie le 13 juin 1853). M’emoires des savants e’trangers, m’emoires pr’esent’es par drives savants a` l’Acade’mie des Sciences, de l’Institute Imperial de France et imprime’ par son ordre, V. 14 Imprimerie Imperial, Paris, 1856, pp .233-560.
16. McMullen, A. E. and Warwaruk, J., “The Torsional Strength of
Reinforced Concrete Beams Subjected to Combined Loading,” Research Report, University of Alberta, Edmonton, Canada, July 1967.
17. ACI Standard 318-89, Building Code Requirements for Structural Concrete (ACI 318-89) and Commentary (ACI 318-89), American Concrete Institute, Detroit, 1989, pp 137-180.
18. Collins, M. P., and Mitchell, D., “Shear and Torsion Design of Prestressed and Non-Prestressed Concrete Beams,” PCI JOURNAL, V5., No.5, Sept-Oct.1980, pp. 44-76.
19. Khaldoun N. Rahal and Michael P. Collins, “ Simple Model for Predicting Torsional Strength of Reinforced and Prestressed Concrete Sections,” ACI Journal Preceedings V. 93, No. 6, Nov-Dec.1996, pp. 658-666.
20. Bredt, R., “Kritische Bemerkungen zur Drehungselastizitat,” Zeitschrift des Verrines Deutscher Ingenieure, Band 40, No. 28, July 11, 1896, pp. 785-790; No. 29, July 18, 1896, pp. 813-817.
21. Hsu, T. T. C., and Mo, Y. L.,“Softening of Concrete in Torsional Members-Theory and Test,”ACI Journal, Proceedings V. 82, No. 3, May-June. 1985, pp. 290-303.