簡易檢索 / 詳目顯示

研究生: 陳思因
Chen, Sih-Yin
論文名稱: 土壤結構互制問題之非線性有限元素分析
Nonlinear Finite Element Analysis of Soil-Structure Interaction Problems
指導教授: 朱聖浩
Ju, Shen-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 116
中文關鍵詞: 非線性土壤結構互制有限元素法地盤放大效應反褶積運算
外文關鍵詞: Nonlinearity, Soil-structure interaction, Finite element method, Base amplification effect, Deconvolution method
相關次數: 點閱:148下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要目的為考慮土壤之材料行為為非線性之下,以三維有限元素網格模擬土壤-結構互制之行為,並比較與考慮土壤材料為線性之差異。本論文將量測得到之加速度資料反算至不同性質土層底部,確認地表計算得來之加速度與量測值近似後,將底層加速度作為震源進行分析。以甲仙地震量測到之加速度為依據,先進行反褶積將地盤放大效應造成之影響消除,再將得到之振動歷時輸入至土壤網格底部進行動態分析。論文中以三種不同高度RC建築作為模擬互制行為之結構,以得知土壤材料行為在不同非線性程度下對於不同樓層高度之建築產生的影響。分析結果顯示當土壤材料行為愈非線性,樓層加速度振幅有變小的趨勢,但由於在結構物基底的振動歷時相當接近,因此整體而言線性與非線性之結果差異不大。

    The main purpose of this thesis is to perform the soil-structure interaction analysis by three-dimension finite element meshes in the consideration of the nonlinearity for the soil behavior and to compare with the results of linear soil behavior. This study transfer the measured seismic accelerations to mesh bottom in different soil medium, make sure that different seismic loads induce similar surface accelerations, and then apply the seismic loads for analyzing. The acceleration of Jiaxian earthquake measured in Shanhua is a basis for this thesis. In accordance with this acceleration, the deconvolution method is used to eliminate the effect of the base amplification. There are three kinds of height RC buildings which are discussed for simulating the interaction behavior in the thesis. From the cases in the study, the influences of buildings with different height caused by different nonlinear extent of the soil behavior will be specified. The analyzing results show that the amplitudes of floor accelerations have a trend of decreasing when the nonlinear soil is considered. However, the acceleration histories at the structural base are similar such that the results of linear and nonlinear analysis are imperceptible generally.

    Content 摘要 I ABSTRACT II 誌謝 III CONTENT IV LIST OF TABLE VII LIST OF FIGURE VIII CHAPTER 1 INTRODUCTION 1 1.1. BACKGROUND AND PROPOSE 1 1.2. LITERATURE REVIEW 2 1.3 BRIEF ACCOUNT OF RESEARCH 11 CHAPTER 2 THEORY ILLUSTRATION 13 2.1. INTRODUCTION 13 2.2. ISOPARAMETRIC FORMULATION [37] 14 2.2.1. Isoparametric Elements 14 2.2.2. Bilinear and Quadratic Quadrilaterals 16 2.2.3. Hexahedral Isoparametric Elements 18 2.3. THE YIELD CRITERION [38] 19 2.3.1. Tresca Yield Criterion (1864) 20 2.3.2. Von Mises Yield Criterion (1913) 21 2.3.3. Mohr-Coulomb Yield Criterion 22 2.3.4. Drucker-Prager Yield Criterion 24 2.4 CAP MODEL [43] 25 2.5 FINITE ELEMENT FORMULATION FOR LARGE DEFORMATION[43] 28 2.6 NEWMARK’S METHOD[39] 31 2.6.1. Basic Procedure 32 2.6.2. Newmark’s Method for Linear System 33 2.6.3 Newmark’s Method for Nonlinear System 35 2.7 FAST FOURIER TRANSFORM (F.F.T.)[40] 37 CHAPTER 3 THE PROGRAMS AND CASES 52 3.1. INTRODUCTION 52 3.2. PROGRAMS FOR FINITE ELEMENT ANALYSIS 52 3.2.1. The Program, AE 53 3.2.2. The Program, AD 53 3.2.3. The Program, AB 54 3.2.4. The Program, AN 54 3.2.5. The Program, VASJAPAN 55 3.3. PROCEDURE OF THE ANALYSIS 55 3.4. ILLUSTRATION OF MESHES 56 3.4.1. Illustration of Building Mesh 57 3.4.2. Illustration of Soil Mesh 57 3.5. CASES INTRODUCTION 58 CHAPTER 4 SEISMIC RESPONSE ANALYSIS 69 4.1. INTRODUCTION 69 4.2. FINITE ELEMENT MODEL 69 4.3. GENERATION OF GROUND MOTION 71 4.3.1 Deconvolution Method 71 4.3.2. Generation Results 73 4.3.3. Conclusions for the Generation of Ground Motion 75 4.4. SEISMIC ANALYTIC RESULTS 76 4.4.1. Free-Field Responses 77 4.4.2. Floor Responses 77 4.4.3. Maximum Floor Accelerations 80 4.5. CONCLUSIONS 81 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 100 5.1. CONCLUSIONS 100 5.2. FUTURE WORK 101 REFERENCES 103 APPENDIX FINITE ELEMENT ANALYTIC PROGRAMS 109 自述 116

    References
    1.Richart F.E.,Hall Jr. J.R., and Woods R.D., (1970), “Vibrations of Soils and Foundations”, Prentice-Hall, New Jersey.
    2.Lysmer J., Utaka T., Tsai C.F., and Seed H.B., (1975), ‘FLUSH – A Computer Program for Approximate 3D Analysis of Soil-Structure interaction Problem’, Report EERC-75-30, University of California, Berkeley.
    3.Wass G., (1972), “Linear two-dimensional analysis of soil dynamics problems in semi-infinite layer media”, Ph.D. Thesis, University of California, Berkeley, CA.
    4.Kausel E., (1974), “An explicit solution for the Green's functions for dynamic loads in layered media”, Technical Report R81-13, Department of Civil Engineering, MIT Press, Cambridge, MA.
    5.Morris D., (1966), “Interaction of Continuous Frames and Soil Media”, J Struct. Eng. Div. ASCE 1966; (5) : 13-43.
    6.Subbaa K.S., Rao H., and Sharaadaa B.V., (1985), “Interaction Analysis of Frames with Beam Footing”, Proc. Indian Geotech. Conf. Roorkee 1985; (1):389-95.
    7.Allam M.M., Subba Rao K.S., and Subramanya I.V.V., (1991), “Frame Soil Interaction and Winkler Model”, Proceedings of Institution of Civil Engineers, Part 2, 1991, p.477-94.
    8.Deshmukh A.M., Karnarkar S.R., (1991), “Interaction Analysis of Plane Frame with Soil”, Proc. Indian Geotech. Conf. Surat India 1991; (1):323-6.
    9.Dutta S.C., Bhattacharya G., and Moitra D., (1999), “Effect of Soil-Structure Interaction on Building Frames”, Proc. Indian Geotech. Conf. 1999; (1):123-6.
    10.Dutta S.C., Maiti A., and Moitra D., (1999), “Effect of Soil-Structure Interaction on Column Moment of Building Frames”, J Inst. Eng (India) 1999; (May):1-7.
    11.Bhattacharya G., Dutta S.C., Roy R., Dutta S., and Roy T.K., (2000), “A Simple Approach for Frame-Soil Interaction Analysis”, IGC: The Millenium Conference, India Institute of Technology, Powai, Mumbai, 2000, p.119-22.
    12.Stewart J.P., Fenres G.L., and Seed R.B., (1999), “Seismic Soil-Structure Interaction in Buildings I:Analytical Method”, J. Geotech. Geoenviron. Eng. Div. 1999; 125(1):26-37.
    13.Stewart J.P., Seed R.B., and Fenres G.L., (1999), “Seismic Soil-Structure Interaction in Buildings II:Empirical Findings”, J. Geotech. Geoenviron. Eng. Div. 1999; 125(1):38-48.
    14.Masahiro I., (1998), “Three-Dimensional Non-linear Soil-Building Interaction Analysis in the Lakebed Zone of Mexico City During the Hypothetical Guerrero Earthquake”, Earthquake Engng. Struct. Dyn. 27, 1483-1502.
    15.Stewart J.P., Fenves G.L., and Seed R.B., Members, (1999), “Seismic Soil-Structure Interaction in Buildings. I : Analytical Methods”, Journal of Geotechnical and Geoenvironmental Engineering / 1999 / 26-37.
    16.Takewaki I., Fujii N., Uetani K., (2002), “Simplified Inverse Stiffness Design for Nonlinear Soil Amplification”, Engineering Structures 24 (2002) 1369-1381.
    17.von Estorff O., Firuziaan M., (2000), “Coupled BEM/FEM Approach for Nonlinear Soil-Structure Interaction”, Engineering Analysis with Boundary Elements 24 (2000) 715-725.
    18.Ju S.H. and Wang Y.M., (2001), “Time-dependent absorbing boundary conditions for elastic wave propagation”, Int. J. Numer. Meth. Engng. 2001; 50:2159-2174.
    19.Kobayashi T., Yoshikawa K., Takaoka E., Nakazawa M., Shikama Y., (2002) “Time history nonlinear earthquake response analysis considering materials and geometrical nonlinearity”, Nuclear Engineering and Design 212 (2002) 145–154.
    20.Casciati S., Borja R.I., (2004), “Dynamic FE analysis of South Memnon Colossus including 3D soil–foundation–structure interaction”, Computers and Structures 82 (2004) 1719–1736.
    21.Maheshwari B.K., Truman K.Z., El Naggar M.H., Gould P.L., (2004), “Three-dimensional nonlinear analysis for seismic soil–pile-structure interaction”, Soil Dynamics and Earthquake Engineering 24 (2004) 343–356.
    22.Bárcena A., Esteva L., (2007), “Influence of dynamic soil–structure interaction on the nonlinear response and seismic reliability of multistorey systems”, Earthquake Engng Struct. Dyn. 2007; 36:327–346.
    23.Jahromi H.Z., Izzuddin B.A., Zdravkovic L., (2009), “A domain decomposition approach for coupled modelling of nonlinear soil-structure interaction”, Comput. Methods Appl. Mech. Engrg. 198 (2009) 2738–2749.
    24.Naohiro N., (2009), “Nonlinear response analyses of a soil–structure interaction system using transformed energy transmitting boundary in the time domain”, Soil Dynamics and Earthquake Engineering 29 (2009) 799–808.
    25.Jeremić B., Jie G., Preisig M., Tafazzoli N. (2009), “Time domain simulation of soil–foundation–structure interaction in non-uniform soils”, Earthquake Engng Struct. Dyn. 2009; 38:699–718.
    26.Gupta, S., Lin T.W., Penzien J., Yeh C.S., (1980), “Hybrid-Modeling of Soil Structure Interaction”, Report No. EERC-80-09 Earthquake Engineering Research Center, University of California, Berkeley.
    27.Lysmer J., Kuhlemeyer R.L.., (1969), “Finite dynamic model for infinite media”, J Eng. Mech. Div. 1969; 95(4):859-77.
    28.Smith W., (1973), “A non-reflecting plane boundary for wave propagation problems”, J Comput. Phys. 1973; 15:492-503.
    29.Kunar R.R., Rodriguez-Ovejero L., (1980), “A model with non-reflecting boundaries for use in explicit soil-structure interaction analysis”, Earthquake Engng Struct. Dyn. 1980; 8:361–74.
    30.Werkel H., (1980), “Dynamic finite element analysis of three-dimensional soil models with a transmitting element”, Earthquake Engng Struct. Dyn. 1986; 14(1):41–60.
    31.Ahmad S., Banerjee P.K., (1988), “Multi-domain BEM for two-dimensional problems in elastodynamics”, Int. J Number Methods Eng. 1988; 26(4):891-911.
    32.Chow Y.K., Smith I.M., (1981), “Static and periodic infinite solid elements”, Int. J Number Methods Eng. 1981; 17(4):503-26.
    33.Pak R.Y., Guzina B.B., (1999), “Seismic soil-structure interaction analysis by direct boundary element methods”, Int. J Solids Struct. 1999; 36(31):4743-66.
    34.Apsel R.J., Luco J.E., (1987), “Impedance functions for foundations embedded in a layered medium: An integral equation approach”, J Earthquake Engineering and Structural Dynamics, vol. 15, 213-231.
    35.Wong H.L. and Luco J.E., (1976), “Dynamic response of rigid foundation of arbitrary shape”, Earthquake Engineering and Structural Dynamics, 4. 576-587.
    36.Lysmer J., Tabatabaie M., Tajirian F., Vahdani S., Ostadan F., (1981), ‘SASSI – A System for Analysis of Soil-Structure Interaction’, Report No. UCB/GT/81-02, University of California, Berkeley.
    37.Cook R.D., Malkus D.S., Plesha M.E., (2002), “Concepts and applications of finite element analysis”, John Wiley & Sons, New York, 1981.
    38.Owen D. R. J., Hinton E., “Finite element in plasticity: Theory and Practice”, Pineridge Press Limited, Swansea U.K., 1980.
    39.Chopra, Anil K., “Dynamics of structures: Theory and applications to earthquake engineering”, Prentice Hall, 2007.
    40.Oppenheim A.V., Schafer R.W., “Discrete-Time Signal Processing”, Prentice Hall, 1999.
    41.Shao-Fan Tung, (2008), “Time-Domain Finite Element Analysis of Soil-Structure Interaction Problems”, Master’s thesis, Department of Civil Engineering, National Cheng Kung University, Taiwan (R.O.C.).
    42.Jeremić B., (2008), “Lecture Notes on Computational Geomechaics:Inelastic Finite Elements for Pressure Sensitive Materials”, Department of Civil and Environmental Engineering, University of California, Davis.
    43.Chien-Ho Lee, (1998), “Investigating the Structure Behavior of the Stiffening Diaphragm Wall” , Master’s thesis, Department of Civil Engineering, National Cheng Kung University, Taiwan (R.O.C.).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE