簡易檢索 / 詳目顯示

研究生: 江建翰
Chiang, Chien-Han
論文名稱: 陶瓷燒附至氧化鋯固定式局部義齒介面優化
Optimizing the Interfaces of Porcelain-Fused-To-Zirconia Fixed Partial Dentures
指導教授: 林啟倫
Lin, Chi-Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 65
中文關鍵詞: 全陶瓷固定式局部義齒結構最佳化熱應力有限元素分析
外文關鍵詞: all-ceramic fixed partial dentures, structure optimization, thermal stress, finite element analysis
相關次數: 點閱:104下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全陶瓷材料用於固定式局部義齒已有數十年時間,雖然氧化鋯材料擁有絕佳的機械性質,但是在近幾年的臨床試驗卻發現全陶瓷固定式局部義齒的碎裂率比傳統金屬陶瓷義齒還要來的高,由於氧化鋯熱傳導係數比起金屬還要來的低,因此在製造過程中容易因為內外溫差而引起應力集中,造成結構上的缺陷,本研究透過最佳化不同材料介面間結構,以改善其應力集中的問題。
    首先利用牙科設計軟體,取得傳統組的固定式局部義齒模型,將拓樸最佳化演算法導入有限元素分析軟體,進行固定式局部義齒介面形狀最佳化,利用有限元素節點連續性進行材料交界面的抓取,透過權重函數值得給定,以及置換材料門檻的設定,逐步的最佳化不同材料的幾何邊界,直到滿足收斂條件即停止,後續再針對最佳化後的結果進行後處理,得到最佳化後的完整模型。並且透過一個簡易直角試片進行實驗驗證,預設一個高度應力集中的模型,帶入最佳化法中進行最佳化,再針對改善後的試片形狀進行製作,並施以壓力實驗。
    本研究期望以結構優化的方法針對不同材料的交界處進行幾何形狀的設計,以降低加工製造產生的殘留應力為目標,由模擬的結果來看,在優化前與優化後的陶瓷內部最大主應力分布較為平均,且傳統上氧化鋯頰側的最大主應力在經過優化後下降許多。而簡易的實驗驗證也取得初步的成功,最佳化後的結果徹底改善應力集中的區域。

    All-ceramic fixed partial dentures (FPDs) have widely replaced metal-ceramic ones during the last few decades. Clinically, the substructure of the all-ceramic FPD was made by zirconia material and covered with a layer of veneering porcelain for esthetics. Although zirconia owned excellent mechanical property and biocompatibility, recent clinical trials reported that a high chipping rate appeared in veneered porcelain layers. The present study integrated the finite element method with optimization algorithm to find solution that lowers the risk of chipping. For validation, a simplified experiment was used to validate the optimization process. In all-ceramic FPD simulation results, the optimal model outperformed than the traditional model in terms of the peak values of maximum principal stress and stress concentration. In experimental results, the optimization process improved the cracking issue in fabrication process. The optimization approach presented in this study showed the potential to help clinicians achieve more robust all-ceramic FPDs and could also be applied to other biomechanical design processes.

    摘要 I Extended Abstract II 致謝 XIII 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 以氧化鋯為主的全陶瓷固定式局部義齒 (Zirconia-based all-ceramic fixed partial denture) 的發展 2 1.2.2 以氧化鋯為主的全陶瓷固定式局部義齒的失效原因 2 1.3 研究背景 3 1.3.1 連接體的設計之相關研究 3 1.3.2 材料分布之相關研究 4 1.3.3 製造過程中因熱應力引起的材料缺陷之相關研究 5 1.3.4 工程最佳化設計 6 1.3.5 對於簡化有限元素模型限制 6 1.3.6 對於目前文獻的總結 7 1.4 研究動機與目的 7 第二章 材料與方法 8 2.1 牙齒三維模型幾何建立 8 2.2 設計區間的選定 10 2.3 材料與邊界條件 11 2.3.1 材料特性 11 2.3.2 邊界條件設定 12 2.4 雙向結構最佳化 12 2.5 研究方法與流程 13 2.5.1 最佳化程式介紹 13 2.5.2 最佳化程序流程 16 2.6 最佳化後對模型的後處理 17 2.7 最佳化案例之問題描述 18 2.7.1 二維平板 19 2.7.2 陶瓷燒附至氧化鋯固定式局部義齒 19 2.8 實驗驗證 20 2.8.1 實驗試片製作流程 21 2.8.2 實驗治具與試片 22 第三章 結果 24 3.1 案例一-二維平板模擬結果 24 3.1.1 係數值為1.0 24 3.1.2 係數值為3.0 24 3.1.3 係數值為5.0 24 3.1.4 係數值為8.0 24 3.2 案例二-陶瓷燒附至固定式局部義齒模擬結果 29 3.2.1 不同係數值最終迭代結果 29 3.2.2 運算時間與參數設定 30 3.2.3 最佳化後經平滑化之結果 30 3.3 驗證實驗結果 31 3.3.1 熱應力模擬結果 31 3.3.2 模型製作結果 32 3.3.3 力學壓頭測試結果 34 3.3.4 力學測試後的試片碎裂結果 34 第四章 討論 37 4.1 案例一-二維平板討論 37 4.1.1 不同係數值對結果的外型探討 37 4.1.2 二維平板最佳化組別比較 38 4.2 例二-陶瓷燒附至固定式局部義齒結果討論 38 4.2.1 最佳化前後熱應力值力學表現 38 4.2.2 最佳化前後交界面元素平均最大主應力 40 4.3 實驗驗證 42 4.3.1 不同形狀試片製作結果比較 42 4.3.2 傳統組與最佳化組應力值比較 43 第五章 結論與未來研究方向 48 5.1 結論 48 5.2 針對未來可改善的建議 49 參考文獻 50 附錄A. 傳統組實驗之力-位移圖 54 附錄B. 最佳化組實驗之力-位移圖 59 附錄C. 傳統組破裂狀態 64 附錄D. 最佳化組破裂狀態 65

    [1]I. Sailer, B. E. Pjetursson, M. Zwahlen, and C. H. Hämmerle, "A systematic review of the survival and complication rates of all‐ceramic and metal–ceramic reconstructions after an observation period of at least 3 years. Part II: fixed dental prostheses," Clinical oral implants research, vol. 18, no. s3, pp. 86-96, 2007.
    [2]E. E. Daou, "The zirconia ceramic: strengths and weaknesses," The open dentistry journal, vol. 8, p. 33, 2014.
    [3]P. Triwatana, N. Nagaviroj, and C. Tulapornchai, "Clinical performance and failures of zirconia-based fixed partial dentures: a review literature," J Adv Prosthodont, vol. 4, no. 2, pp. 76-83, May 2012.
    [4]I. Sailer, J. Gottner, S. Känel, and C. H. Franz Hämmerle, "Randomized controlled clinical trial of zirconia-ceramic and metal-ceramic posterior fixed dental prostheses: a 3-year follow-up," International Journal of Prosthodontics, vol. 22, no. 6, p. 553, 2009.
    [5]S. D. Heintze and V. Rousson, "Survival of zirconia-and metal-supported fixed dental prostheses: a systematic review," International Journal of Prosthodontics, vol. 23, no. 6, 2010.
    [6]I. Sailer, A. Feher, F. Filser, H. Lüthy, L. J. Gauckler, P. Schärer, and C. H. F. Hämmerle, "Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up," Quintessence International, vol. 37, no. 9, 2006.
    [7]M. Roediger, N. Gersdorff, A. Huels, and S. Rinke, "Prospective evaluation of zirconia posterior fixed partial dentures: four-year clinical results," International Journal of Prosthodontics, vol. 23, no. 2, 2010.
    [8]T. Murase, S. Nomoto, T. Sato, A. Shinya, T. Koshihara, and H. Yasuda, "Effect of connector design on fracture resistance in all-ceramic fixed partial dentures for mandibular incisor region," The Bulletin of Tokyo Dental College, vol. 55, no. 3, pp. 149-155, 2014.
    [9]Y. Takuma, S. Nomoto, T. Sato, and N. Sugihara, "Effect of framework design on fracture resistance in zirconia 4-unit all-ceramic fixed partial dentures," The Bulletin of Tokyo Dental College, vol. 54, no. 3, pp. 149-156, 2013.
    [10]W.-s. Oh and K. J. Anusavice, "Effect of connector design on the fracture resistance of all-ceramic fixed partial dentures," The Journal of prosthetic dentistry, vol. 87, no. 5, pp. 536-542, 2002.
    [11]M. Tsumita, Y. Kokubo, V. Steyern, P. Vult, and S. Fukushima, "Effect of Framework Shape on the Fracture Strength of Implant‐Supported All‐Ceramic Fixed Partial Dentures in the Molar Region," Journal of Prosthodontics, vol. 17, no. 4, pp. 274-285, 2008.
    [12]A. A. Madfa and X. G. Yue, "Dental prostheses mimic the natural enamel behavior under functional loading: A review article," Jpn Dent Sci Rev, vol. 52, no. 1, pp. 2-13, Feb 2016.
    [13]A. A. Al-Maqtari, A. A. A. Razak, and M. Hamdi, "3D Finite element analysis of functionally graded multilayered dental ceramic cores," Dental Materials Journal, vol. 33, no. 4, pp. 458-465, 2014.
    [14]R. Belli, S. Monteiro, Jr., L. N. Baratieri, H. Katte, A. Petschelt, and U. Lohbauer, "A photoelastic assessment of residual stresses in zirconia-veneer crowns," J Dent Res, vol. 91, no. 3, pp. 316-20, Mar 2012.
    [15]M. J. Tholey, M. V. Swain, and N. Thiel, "Thermal gradients and residual stresses in veneered Y-TZP frameworks," Dent Mater, vol. 27, no. 11, pp. 1102-10, Nov 2011.
    [16]J. B. Meira, B. R. Reis, C. B. Tanaka, R. Y. Ballester, P. F. Cesar, A. Versluis, and M. V. Swain, "Residual stresses in Y-TZP crowns due to changes in the thermal contraction coefficient of veneers," Dent Mater, vol. 29, no. 5, pp. 594-601, May 2013.
    [17]Z. Zhang, S. Zhou, Q. Li, W. Li, and M. V. Swain, "Sensitivity analysis of bi-layered ceramic dental restorations," Dent Mater, vol. 28, no. 2, pp. e6-14, Feb 2012.
    [18]D. Fabris, J. C. Souza, F. S. Silva, M. Fredel, J. Mesquita-Guimaraes, Y. Zhang, and B. Henriques, "Thermal Residual Stresses in Bilayered, Trilayered and Graded Dental Ceramics," Ceram Int, vol. 43, no. 4, pp. 3670-3678, Mar 2017.
    [19]B. Henriques, D. Fabris, J. C. M. Souza, F. S. Silva, J. Mesquita-Guimaraes, Y. Zhang, and M. Fredel, "Influence of interlayer design on residual thermal stresses in trilayered and graded all-ceramic restorations," Mater Sci Eng C Mater Biol Appl, vol. 71, pp. 1037-1045, Feb 1 2017.
    [20]Z. Zhang, Q. Li, W. Li, and M. V. Swain, "<Transient Modelling of Thermal Processing for ceramic Prostheses.pdf>," 2009.
    [21]Z. Zhang, M. Guazzato, T. Sornsuwan, S. S. Scherrer, C. Rungsiyakull, W. Li, M. V. Swain, and Q. Li, "Thermally induced fracture for core-veneered dental ceramic structures," Acta Biomater, vol. 9, no. 9, pp. 8394-402, Sep 2013.
    [22]G. Wang, S. Zhang, C. Bian, and H. Kong, "Effect of thickness ratio on load-bearing capacity of bilayered dental ceramics," J Prosthodont, vol. 24, no. 1, pp. 17-24, Jan 2015.
    [23]Z. Zhang, J. Chen, E. Li, W. Li, M. Swain, and Q. Li, "Topological design of all‐ceramic dental bridges for enhancing fracture resistance," International journal for numerical methods in biomedical engineering, vol. 32, no. 6, 2016.
    [24]E. Askari, P. Flores, and F. Silva, "A particle swarm-based algorithm for optimization of multi-layered and graded dental ceramics," J Mech Behav Biomed Mater, vol. 77, pp. 461-469, Jan 2018.
    [25]A. SUNDH and G. S. GREN, "<A comparison of fracture strength of yttrium-oxide-partially-stabilized zirconia ceramic crowns with varyingcore thickness, shapes and veneer ceramics.pdf>," 2004.
    [26]Z. H. Zuo and Y. M. Xie, "A simple and compact Python code for complex 3D topology optimization," Advances in Engineering Software, vol. 85, pp. 1-11, 2015.
    [27]X. Huang and Y. Xie, "Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method," Finite Elements in Analysis and Design, vol. 43, no. 14, pp. 1039-1049, 2007.
    [28]Z. Zhang, S. Zhou, E. Li, W. Li, M. V. Swain, and Q. Li, "Design for minimizing fracture risk of all-ceramic cantilever dental bridge," Bio-medical materials and engineering, vol. 26, no. s1, pp. S19-S25, 2015.
    [29]X. F. Sun, J. Yang, Y. M. Xie, X. Huang, and Z. H. Zuo, "Topology Optimization of Composite Structure Using Bi-Directional Evolutionary Structural Optimization Method," Procedia Engineering, vol. 14, pp. 2980-2985, 2011.
    [30]M. P. Dittmer, L. Borchers, M. Stiesch, and P. Kohorst, "Stresses and distortions within zirconia-fixed dental prostheses due to the veneering process," Acta biomaterialia, vol. 5, no. 8, pp. 3231-3239, 2009.
    [31]B. Gokce, H. S. Cotert, and M. Ozcan, "A study of compressive strength betweenzirconia framework and veneering ceramic as a function ofthermal expansion coefficient using Shell-Nielsen test method," (in English), Journal of Adhesion Science and Technology, Article vol. 29, no. 18, pp. 1924-1936, Sep 2015.
    [32]P. Cevik, D. Cengiz, and M. A. Malkoc, "Bond strength of veneering porcelain to zirconia after different surface treatments," Journal of adhesion science and Technology, vol. 30, no. 22, pp. 2466-2476, 2016.
    [33]V. F. Wandscher, A. M. E. Marchionatti, A. Otani, C. D. Bergoli, P. F. Cesar, and L. F. Valandro, "Effects of bonding area size, surface treatment and specimen configuration on the push out test for assessing bonding and stress distribution to Y-TZP," International Journal of Adhesion and Adhesives, vol. 85, pp. 315-321, 2018.

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE