| 研究生: |
劉育伶 Liu, Yu-ling |
|---|---|
| 論文名稱: |
金/二氧化鈰奈米粒子之製備及其催化特性之研究 Preparation and Catalytic Properties of Au/CeO2 Nanoparticles |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 金觸媒 、晶形 、針狀 、二氧化鈰 |
| 外文關鍵詞: | morphology, needle-like, cerium oxide, gold catalyst |
| 相關次數: | 點閱:68 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,採用沉積-沉澱法(deposition-precipitation method)製備金承載針狀二氧化鈰(Au/N-CeO2)奈米微粉作為CO氧化觸媒。首先,以兩階段沉澱法製備奈米針狀CeO2擔體,接著,以氯金酸(HAuCl4)溶液作為前驅鹽將奈米金粒子沉積於CeO2上。文中探討金前驅鹽溶液pH值及濃度對所得觸媒之金含量、形態、晶相結構以及觸媒比表面積等特性之影響,並以一氧化碳之氧化進行觸媒活性分析。另外,以顆粒狀CeO2 (P-CeO2)作擔體製備Au/P-CeO2觸媒以探討擔體晶形對其催化活性之影響,並輔以TPR、FTIR及XPS等分析,進一步解析各觸媒之金粒子與CeO2間之交互作用。
實驗結果顯示,金前驅鹽溶液之pH值影響金粒子於N-CeO2上之沉積量及分散性甚鉅。pH 6所得之Au/N-CeO2觸媒擁有最大之金含量,以及最高之CO轉化率。然而,隨著金前驅鹽pH值之上升,金粒子之粒徑減小,且其分散性愈佳。比較Au/N-CeO2與N-CeO2觸媒發現,金之承載可明顯提高催化活性,此外,由TPR、FT-IR及XPS等分析結果顯示,Au與CeO2間明顯存在一作用力,即Au4f之電子部分轉移至Ce上造成CeO2氧缺陷數目之增加,有助於反應活性之提昇。
當金前驅鹽濃度由1wt%增加至3wt%時,雖然金含量增加,但當前驅鹽濃度大於2wt%時,由於金粒子之聚集現象,導致催化活性下降。比較Au/N-CeO2與Au/P-CeO2之觸媒活性發現,Au/N-CeO2擁有較高活性,此乃因N-CeO2擔體具有較多之高活性晶面所致。
In this study, gold supported cerium oxide nanoneedles (Au/N-CeO2) were synthesized by the deposition-precipitation method for the catalytic CO oxidation. Nanocrystalline CeO2 needles were firstly prepared by the two-stage precipitation method. Then, Au nanoparticles were deposited on the prepared CeO2 nanoneedles starting from the HAuCl4 solution. The effects of pH value and concentration of Au precursor on properties of the resulting Au/N-CeO2 including gold content, morphology, crystalline structure and surface area were investigated. Furthermore, the catalytic oxidation of carbon monoxide over the Au/N-CeO2 was employed as the model reaction for analyzing the activities of catalysts. In order to study the effect of support morphology on catalytic activity, the particulate CeO2 (P-CeO2) was used as the support for preparing Au/P-CeO2. Moreover, the interaction between Au and CeO2 support were characterize by using TPR, XPS and FTIR.
The results showed that the pH value of the precursor solutions played an important role on the deposited amount and dispersion of Au nanoparticles. The sample prepared at pH value of about 6 exhibited the largest deposition amount and thus showed a maximum conversion on CO oxidation. However, with increasing the pH value of precursor solution, the Au particle size decreased, and the Au dispersion became higher. As compared the Au/N-CeO2 with N-CeO2 catalysts, it demonstrated that the loading gold would obviously lead to enhance the catalytic activity. Furthermore, from results of TPR, XPS and FT-IR analysis, it revealed that electrons were partially transferred from Au to Ce and then caused the increasing of oxygen defects and promoting the catalytic activity.
With increasing the Au precursor concentration from 1 wt% to 3 wt%, the gold content was increased. However, when the Au precursor concentration was higher than 2 wt%, the catalytic activity decreased due to the aggregation of Au grains. In addition, the Au/N-CeO2 catalysts exhibited higher activity than Au/P-CeO2 ones. This was obviously attributed from having more active facets for the N-CeO2 support.
[1] G. C. Bond and D. T. Thompson, “Catalysis by Gold,” Catal. Rev.-Scl. Eng., 41. 319-388 (1999).
[2] M. Haruta, “Size- and support-dependency in the catalysis of gold,” Catal. Today, 36, 153-166 (1997).
[3] M. Haruta, T. Kobayashi, H. Sano and N. Yamada, “Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C,” Chem. Lett., 16, 405-408 (1987).
[4] S. Scire, S. Minico, C. Crisafulli and S. Galvagno, “Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide,” Appl. Catal. B:Environ., 34, 277-285 (2001).
[5] S. Scire, S. Minico, C. Crisafulli, R. Maggiore and S. Galvagno, “Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts,” Appl. Catal. B:Environ., 28, 245-251 (2000).
[6] S. Scire, S. Minico, C. Crisafulli, C. Satriano and A. Pistone, “Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts,” Appl. Catal. B:Environ., 40, 43-49 (2003).
[7] M. A. Centeno, M. Paulis, M. Montes and J. A. Odriozola, “Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts,” Appl. Catal. A:Gen., 234, 65-78 (2002).
[8] A. Ueda, T. Oshima and M. Haruta, “Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides,” Appl. Catal. B:Environ., 12, 81-93 (1997).
[9] A. Ueda and M. Haruta, “Nitric oxide reduction with hydrogen, carbon monoxide, and hydrocarbons over gold catalysts,” Gold Bull., 32, 3 (1999).
[10] S. D. Lin, A. C. Gluhoi and B. E. Nieuwenhuys, “Ammonia oxidation over Au/MOx/gamma-Al2O3 - activity, selectivity and FTIR measurements,” Catal. Today, 90, 3-14 (2004).
[11] D. Andreeva, L. Ilieva, V. Idakiev, T. Tabakova, P. Falaras, A. Bourlinos and A. Travlos, “Low-temperature water-gas shift reaction over Au/CeO2 catalysts,” Catal. Today, 72, 51-57 (2002).
[12] G. K. Bethke and H. H. Kung, “Selective CO oxidation in a hydrogen-rich stream over Au/gamma-Al2O3 catalysts,” Appl. Catal. A:Gen., 194, 43-53 (2000).
[13] G. Panzera, V. Modafferi, S. Candamano, A. Donato, F. Frusteri, P. L. Antonucci, “CO selective oxidation on ceria-supported Au catalysts for fuel cell application,” J. Power Sources, 135, 177-183 (2004).
[14] R. J. H. Grisel, C. J. Weststrate, A. Goossens, M. W. J. Crajé, A. M. vander Kraan and B. E. Nieuwenhuys, “Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment,” Catal. Today, 72, 123-132 (2002).
[15] A. Wolf and F. Schuth, “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts,” Appl. Catal. A:Gen., 226, 1-13 (2002).
[16] M. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak and R. J. Behm, “CO oxidation over supported gold catalysts-"inert" and "active" support materials and their role for the oxygen supply during reaction,” J. Catal., 197, 113-122 (2001).
[17] A. Donato, A. M. Visco, C. Milone and S. Galvagno, “Catalytic oxidation of carbon monoxide over Au/Fe2O3 preparations,” React. Kinet. Catal. Lett., 61, 219-226 (1997).
[18] E. D. Park and J. S. Lee, “Effects of pretreatment conditions on CO oxidation over supported Au catalysts,” J. Catal., 186, 1-11 (1999).
[19] R. J. H. Grisel and B. E. Nieuwenhuys, “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts,” Catal. Today, 64, 69-81 (2001).
[20] H. F. Mark, D. F. Othmer, C. G. Overberger and G. T. Seaborg, “Encyclopedia of Chemical Technology,” Vol. 5, John Wiley & Sons, New York (1970).
[21] A. Trovarelli, “Catalytic Properties of Ceria and CeO2-Containing Materials,” Catal. Rev., 38, 439-520 (1996).
[22] T. X. T. Sayle, S. C. Parker and C. R. A. Catlow, “Surface Oxygen Vacancy Formation on CeO2 and Its Role in the Oxidation of Carbon-Monoxide,” J. Chem. Soc. Commun., 14, 977-978 (1992).
[23] N. Serpone, D. Lawless and R. Khairutdinov, “Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor?” J. Phys. Chem. B, 99, 16646-16654 (1995).
[24] H. X. Mai, L. D. Sun, Y. W. Zhang, R. Si, W. Feng, H. P. Zhang, H. C. Liu and C. H. Yan, “Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes,” J. Phys. Chem. B, 109, 24380-24385 (2005).
[25] T. Masui, K. Fujiwara, K. Machida and G. Adachi, “Charaterization of Cerium(IV) Oxide Ultrafine Particles Prepared Using Reversed Micelles,” Chem. Mater., 9, 2197-2204 (1997).
[26] P. L. Chen and I. W. Chen, “Reactive Cerium(IV) Oxide Powders by the Homogeneous Precipitation Method,” J. Am. Ceram. Soc., 76, 1577-1583 (1993).
[27] B. P. A. Sermon, G. C. Bond and B. P. Wells, “Hydrogenation of Alkenes over Supported Gold,” J. Chem. Soc. Faraday Trans. I, 75, 385-394 (1979).
[28] D. Guillemot, V. Y. Borovkov, V. B. Kazansky, M. Polisset-Thfoin and J. Fraissard, “Surface characterization of Au/HY by 129Xe NMR and diffuse reflectance IR spectroscopy of adsorbed CO. Formation of electron-deficient gold particles inside HY cavities,” J. Chem. Soc. Faraday Trans., 93, 3587-3591 (1997).
[29] C. F. Baes, Jr. and R. E. Mesmer, eds., “The Hydrolysis of Cations,” 279-286, Robert E. Krieger, Malabar (1986).
[30] J. S. Noh and J. A. Schwarz, “ Estimation of The Point of Zero Charge of Simple Oxides by Mass Titration,” J. Colloid Interf. Sci., 130, 157-164 (1989).
[31] H. Y. Chang and H. I. Chen, “Morphological Evolution for CeO2 Nanoparticles Synthesized by Precipitation Technique,” J. Cryst. Growth, 283, 457-468 (2005).
[32] M. Haruta, T. Kobayashi, H. Sano and N. Yamada, “Novel Gold Catalysts for the Oxidation of Carbon Monoxide,” Chem. Lett., 405-408 (1987).
[33] M. Valden, S. Pak, X. Lai and D. W. Goodman, “Structure Sensitivity of CO Oxidation Over Model Au/TiO2 Catalysts,” Catal. Lett., 56, 7-10 (1998).
[34] M. Okumura, S. Nakamura, S. Tsubota, T. Nakamura, M. Azuma and M. Haruta, “Chemical Vapor Deposition of Gold On Al2O3, SiO2, and TiO2 for The Oxidation of CO and of H2,” Catal. Lett., 51, 53-58 (1998).
[35] C. Baatz, N. Decker and U. Prüße, “New Innovative Gold Catalysts Prepared by An Improved Incipient Wetness Method,” J. Catal., 258, 165-169 (2008).
[36] M. Bowker, A. Nuhu and J. Soares, “High Activity Supported Gold Catalysts by Incipient Wetness Impregnation,” Catal. Today, 122, 245-247 (2007).
[37] M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, “Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide,” J. Catal., 115, 301-309 (1989).
[38] Q. Fu, S. Kudriavtseva, H. Saltsburg and M. Flytzani-Stephanopoulos, “Gold-Ceria Catalysts for Low-Temperature Water-Gas Shift Reaction,” Chem. Eng. J., 93, 41-53 (2003).
[39] X. Yang, Y. Shen, L. Bao, H. Zhu and Z. Yuan. “Oxidation of Lean Formaldehyde in Air Over An Au/CeO2 Catalyst and Its Kinetics,” React. Kinet. Catal. Lett., 93, 19-25 (2008).
[40] C. K. Costello, M. C. Kung , H. –S. Oh, Y. Wang and H. H. Kung, “Nature of the Active Site for CO Oxidation on Highly Active Au/γ-Al2O3,” Appl. Catal. A:Gen, 232, 159-3168 (2002).
[41] S. Tsubota, D. A. H. Cunningham, Y. Bando and M. Haruta, “Preparation of Nanometer Gold Strongly Interacted With TiO2 and the Structure Sensitivity in Low-Temperature Oxidation of CO,” in: G. Poncelet et al. (Eds.), Preparation of Catalysts IV, Elsevier, Amsterdam, 227-234 (1995).
[42] F. Moreau, G. C. Bond and A. O. Taylor, “Gold on Titania Catalysts for the Oxidation of Carbon Monoxide: Control of pH during Preparation With Various Gold Contents,” J. Catal., 231, 105-114 (2005).
[43] H. Sakurai, T. Akita, S. Tsubota, M. Kiuchi and M. Haruta, “Low-Temperature Activity of Au/CeO2 for Water Gas Shift Reaction, and Characterization by ADF-STEM, Temperature-Programmed Reaction, and Pulse Reaction,” Appl. Catal. A, 291, 179-187 (2005).
[44] A. Karpenko, R. Leppelt, V. Plzak, J. Cai, A. Chuvilin, B. Schumacher, U. Kaiser and R. J. Behm, “Influence of the Catalyst Surface Area on the Activity and Stability of Au/CeO2 Catalysts for the Low-Temperature Water Gas Shift Reaction,” Top. Catal., 44, 183-198 (2007).
[45] Z. Y. Yuan, V. Idakiev, A. Vantomme, T. Tabakova, T. Z. Ren and B. L. Su, “Mesoporous and Nanostructured CeO2 as Supports of Nano-sized Gold Catalysts for Low-Temperature Water-Gas Shift Reaction,” Catal. Today, 131, 203-210 (2008).
[46] A. M. Venezia, G. Pantaleo, A. Longo, G. D. Carlo, M. P. Casaletto, F. L. Liotta and G. Deganello, “Relationship Between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts,” J. Phys. Chem. B, 109, 2821-2827 (2005).
[47] R. D. Gonzalez and H. Miura, “Preparation of SiO2-Supported and Al2O3-Supported Clusters of Pt Group-Metals,” Catal. Rev. Sci. Eng., 36, 145-177 (1994).
[48] Y. A. Nechayev and G. V. Nikolenko, Geochem. Intl., 32, 23 (1986).
[49] M. Breysse, M. Guenin, B. Claudel and J. Veron, “Catalysis of Carbon Monoxide Oxidation by Cerium Dioxide”, J. Catal., 28, 54-62 (1973).
[50] F. B. Verduraz and A. Bensalem, “IR Studies of Cerium Dioxide-Influence of Impurities and Defects”, J. Chem. Soc. Faraday Trans, 90, 653-657 (1994).
[51] Y. Sakata, T. Arai, K. Domen, K. Maruya and T. Onishi “Carbon Monoxide and Carbon Dioxide Absoption on Cerium Oxide studies by Fourier-transform Infrared Spectroscopy”, J. Chem. Soc. Faraday Trans., 85, 929-943 (1989).
[52] X. Zhang and K. J. Klabunde, “Superoxide (O2-) On the Surface of Heat-Treated Ceria-Intermediates in the Reversible Oxygen to Oxide Transformation”, Inorg. Chem., 31, 1706-1709 (1992).
[53] José C. Conesa, “Computer Modeling of Surface and Defects on Cerium Dioxide”, Surf. Sci., 339, 337-352 (1995).
[54] L. Oliviero, J. Barbier, D. Duprez, H. Wahyu, J. W. Ponton, I. S. Metcalfe, and D.
Mantzavinos, “Wet Air Oxidation of Aqueous Solutions of Maleic Acid over
Ru/CeO2 Catalysts,” Appl. Catal. B, 35, 1-12 (2001).
[55] E. Aneggi, J. Llorca, M. Boaro, A. Trovarelli, “Surface-Structure Sensitivity of CO Oxidation over Polycrystalline Ceria Powders”, J. Catal., 234, 88-95 (2005).
[56] M. Haruta, “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications,” Gold Bull., 37, 27-36 (2004).
[57] Z. P. Liu, P. Hu and A. Alavi, “Catalytic Role of Gold in Gold-Based Catalysts: A Density Functional Theory Study on the CO Oxidation on Gold,” J. Am. Chem. Soc., 124, 14770-14779 (2002).
[58] M. Okumura, Y. Kitagawa, M. Haruta and K. Yamaguchi, “The Interaction of Neutral and Charged Au Clusters with O2, CO and H2,” Appl. Catal. A: Gen., 291, 37-44 (2005).
[59] S. Bernal, J. J. Calvino, M. A. Cauqui, J. M. Gatica, C. Larese, J. A. Perez, Omil and J. M. Pintado, “Some Recent Result on Metal/Support Interaction Effects in NM/CeO2 (NM: Noble Metal) Catalysts,” Catal. Today, 50, 175-206 (1999).
[60] S. J. Tauster, S. C. Fung and R. L. Garten, “Strong Metal-Support Interactions. Group 8 Noble Metals Supported on TiO2,”J. Am. Chem. Soc., 100, 170-175 (1978).
[61] M. F. Garcia, A. M. Arias, L. N. Salamanca, J. M. Coronado, J. A. Anderson, J. C. Conesa and J. Soria, “Influence of Ceria in Pd Activity for the CO+O2 Reaction,” J. Catal., 187, 474-485 (1999).
[62] H. –S. Oh, J. H. Yang, C. K. Costello, Y. M. Wang, S. R. Bare, H. H. Kung and M. C. Kung, “Selective Catalytic Oxidation of CO: Effect of Chloride on Supported Au Catalysts, “J. Catal., 210, 375-386 (2002).
[63] A. Tschöpe, D. Schaadt, R. Birringer and J. Y. Ying, “Catalytic Properties of Nanostructured Metal Oxides Synthesized by Inert Gas Condensation,” Nanostructured Materials, 9, 423-432 (1997).
[64] F. R. Sarria, A. Penkova, L. M. Martinez, M. A. Centeno, K.Hadjiivanov and J. A. Odriozola, “Role of Water in the CO Oxidation Reaction on Au/CeO2: Modification of the Surface Properties,” Appl. Catal. B, 84, 119-124 (2008).
[65] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet and B. Delmon, “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4,” J. Catal., 144, 175-192 (1993).
[66] M. Manzoli, F. Boccuzzi, A. Chiorino, F. Vindigni, W. Deng and M. Flytzani-Stephanopoulos, “Spectroscopic Features and Reactivity of CO Adsorbed on Different Au/CeO2 Catalysts,” J. Catal., 245, 308-315 (2007).
[67] A. Q. Wang, P. Punchaipetch, R. M. Wallace, T. D. Golden, “X-ray Photoelectron
Spectroscopy Study of Electrodeposited Nanostructured CeO2 Films,” J. Vac. Sci.
Technol. B, 21, 1169-1175 (2003).
[68] P. Burroughs, A. Hamnett, A. F. Orchard, G. Thornton, “Satellite Structure in the
X-ray Photoelectron Spectra of Some Binary and Mixed Oxides of Lanthanum and
Cerium,” J. Chem. Soc. Dalton Trans., 17, 1686-1698 (1976).
[69] H. Xia, Y. Wang, F. Kong, S. Wang, B. Zhu, X. Guo, J. Zhang, Y. Wang and S. Wu, “Au-doped WO3-based Sensor for NO2 Detection at Low Operating Temperature,” Sens. Actuators B, 134, 133-139 (2008).
[70] W. S. Epling, G. B. Hoflund, J. F. Weaver, S. Tsubota and M. Haruta, “Surface Characterization Study of Au/alpha-Fe2O3 and Au/Co3O4 Low-Temperature CO Oxidation Catalysts,” J. Phys. Chem., 100, 9929-9934 (1996).
[71] Y. Yuan, K. Asakura, A. P. Kozlova, H. Wan, K. Tsai and Y. Iwasawa, “Supported Gold Catalysis Derived From the Interaction of a Au-Phosphine Complex With As-precipitated Titanium Hydroxide and Titanium Oxide,” Catal. Today, 44, 333-342 (1998).
[72] Z. L. Wang and X. Feng., “Polyhedral Shapes of CeO2 Nanoparticies,” J. Phys. Chem. B, 107, 13563-13566 (2003).
[73] H. I. Chen and H. Y. Chang, “Synthesis and Characterization of Nanocrystalline Cerium Oxide Powders by Two-Stage Non-Isothermal Precipitation,” Solid state Commun., 133, 593-598 (2005).
[74] R. Si and M. Flytzani-Stephanopoulos, “Shape and Crystal-Plane Effects of Nanoscale Ceria on the Activity of Au-CeO2 Catalysts for the Water-Gas Shift Reaction,” Angew. Chem. Int. Ed., 47, 2884-2887 (2008).
[75] C. Li, Y. Sakata, T. Arai, K. Domen, K. Maruya and T. Onishi, “Carbon Monoxide and Carbon Dioxide Adsorption on Cerium Oxide Studied by Fourier-Transform Infrared Spectroscopy”, J. Chem. Soc. Faraday Trans., 85, 929-943 (1989).
[76] C. Binet, A. Badri, M. Boutonnet-Kizling and J.-C. Lavalley, “FTIR Study of Carbon Monoxide Adsorption on Ceria: CO22- Carbonite Dianion Adsorbed Species,” J. Chem. Soc. Faraday Trans., 90, 1023-1028 (1994).
[77] D. W. Daniel, “Infrared Studies of CO and CO2 Adsorption on Pt/CeO2: The Characterization of Active Sites,” J. Phys. Chem., 92, 3891-3899 (1988).
[78] C. Binet, M. Daturi and J.-C. Lavalley, “IR Study of Polycrystalline Ceria Properties in Oxidised and Reduced States,” Catal. Today, 50, 207-225 (1999).