簡易檢索 / 詳目顯示

研究生: 阮安義
Nguyen, An-Nghia
論文名稱: 碳化鈦奈米管陣列的生物相容性
Biocompatibility of Titanium Carbide nanotube arrays
指導教授: 李澤民
Lee, Tzer-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 131
中文關鍵詞: 陽極氧化碳化鈦奈米管真空熱處理
外文關鍵詞: anodization, titanium carbide nanotubes, vacuum heat treatment
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I ABSTRACT III Acknowledgements VI Table of Contents VII List of Tables XI List of Figures XII Explanation of Symbols XV Chapter 1: Introduction 1 1.1 Background 1 1.2 Osseointegration 3 1.3 Applications of titanium and titanium alloys in medicine 5 1.4 Anodic oxidation 8 1.5 Titanium oxide nanotube arrays 9 1.6 Titanium carbide and vacuum heat treatment 13 1.7 Motivation and objective 15 Chapter 2: Materials and Methods 18 2.1 Experiment procedure 18 2.2 Materials: 19 2.3 Experimental instruments 22 2.4 Preparation of Specimens 23 2.4.1. Titanium substrate: 23 2.4.2 Anodization titanium oxide method: 23 2.4.3 Vacuum heat treatment 24 2.5 Specimens characteristic analysis 25 2.5.1 Surface morphology and element composition 25 2.5.2 Surface phase composition analysis 26 2.5.3 Surface wettability 26 2.5.4 Surface chemical composition analysis 27 2.6 In vitro test 27 2.6.1 Cell culture 27 2.6.2 Samples sterilization 28 2.6.3 Cell morphology 29 2.6.4 Cell proliferation (MTT assay) 30 2.6.5 ALP activity assay 31 2.6.6 Cytoskeleton 32 2.6.7 Bone-related gene expression 34 2.7 In vivo test 35 2.7.1 Sample preparation 35 2.7.2. Surface morphology 36 2.7.3 Removal pre-test 37 2.7.4 Animals and surgical procedure 37 2.7.5 Histological and histomorphometric evaluations 38 2.8 Statistical analysis 39 Chapter 3: Results 40 3.1 Specimens surface characteristic analysis 40 3.1.1 Surface morphology 40 3.1.2. Surface chemical composition analysis 41 3.1.3 Phase composition analysis 42 3.1.4 Surface wettability 43 3.1.5 Electron spectroscopy for chemical analysis 44 3.2 In vitro test 45 3.2.1 Cell growth curve 45 3.2.2 Cell morphology 46 3.2.3 Cytoskeleton 47 3.2.4 Cell proliferation (MTT assay) 49 3.2.5 Cell differentiation: 51 3.2.6 Bone-related genes expression of cells on TiC coating 52 3.3 In vivo study: 52 3.3.1 TiC implant surface morphology 52 3.3.2. Removal test 53 3.3.3. BEI image 53 3.3.4 Bone to Implant contact. 54 Chapter 4: Discussion 55 Chapter 5: Conclusion 61 REFERENCES 108

    [1] D. Regonini, C. R. Bowen, A. Jaroenworaluck and R. Stevens, "A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes," Materials Science and Engineering: R: Reports, vol. 74, no. 12, pp. 377-406, 2013, doi: https://doi.org/10.1016/j.mser.2013.10.001.
    [2] B. C. Muddugangadhar, G. S. Amarnath, S. Tripathi, S. Dikshit and D. B. Ms, "Biomaterials for Dental Implants: An Overview," International Journal of Oral Implantology and Clinical Research, vol. 2, pp. 13-24, 2011.
    [3] K. Anselme, "Osteoblast adhesion on biomaterials," Biomaterials, vol. 21, no. 7, pp. 667-81, 2000, doi: 10.1016/s0142-9612(99)00242-2.
    [4] I. K. Shim, H. J. Chung, M. R. Jung, S. Y. Nam, S. Y. Lee, H. Lee, S. J. Heo and S. J. Lee, "Biofunctional porous anodized titanium implants for enhanced bone regeneration," J Biomed Mater Res A, vol. 102, no. 10, pp. 3639-48, 2014, doi: 10.1002/jbm.a.35026.
    [5] M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia, "Ti based biomaterials, the ultimate choice for orthopaedic implants – A review," Progress in Materials Science, vol. 54, no. 3, pp. 397-425, 2009, doi: https://doi.org/10.1016/j.pmatsci.2008.06.004.
    [6] J. Hirschfeld, E. M. Akinoglu, D. C. Wirtz, A. Hoerauf, I. Bekeredjian-Ding, S. Jepsen, E. M. Haddouti, A. Limmer and M. Giersig, "Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis," Nanomedicine, vol. 13, no. 4, pp. 1587-1593, 2017, doi: 10.1016/j.nano.2017.01.002.
    [7] C. M. Abraham, "A brief historical perspective on dental implants, their surface coatings and treatments," Open Dent J, vol. 8, pp. 50-5, 2014, doi: 10.2174/1874210601408010050.
    [8] S. Parithimarkalaignan and T. V. Padmanabhan, "Osseointegration: an update," J Indian Prosthodont Soc, vol. 13, no. 1, pp. 2-6, 2013, doi: 10.1007/s13191-013-0252-z.
    [9] Y. Liu, B. Rath, M. Tingart and J. Eschweiler, "Role of implants surface modification in osseointegration: A systematic review," Journal of Biomedical Materials Research Part A, vol. 108, no. 3, pp. 470-484, 2020, doi: https://doi.org/10.1002/jbm.a.36829.
    [10] B. D. Boyan, E. M. Lotz and Z. Schwartz, "(*) Roughness and Hydrophilicity as Osteogenic Biomimetic Surface Properties," Tissue Eng Part A, vol. 23, no. 23-24, pp. 1479-1489, 2017, doi: 10.1089/ten.TEA.2017.0048.
    [11] P. C. Chang, N. P. Lang and W. V. Giannobile, "Evaluation of functional dynamics during osseointegration and regeneration associated with oral implants," Clin Oral Implants Res, vol. 21, no. 1, pp. 1-12, 2010, doi: 10.1111/j.1600-0501.2009.01826.x.
    [12] A. W. Tan, B. Pingguan-Murphy, R. Ahmad and S. A. Akbar, "Review of titania nanotubes: Fabrication and cellular response," Ceramics International, vol. 38, no. 6, pp. 4421-4435, 2012, doi: https://doi.org/10.1016/j.ceramint.2012.03.002.
    [13] C. Pereira, A. Sulaimen, R. Decurcio, M. Chaer and S. o. Ribeiro Filho, "Success of Brånemark system dental implants and implant-supported prostheses: A 1 year retrospective clinical and radiological study of 232 implants of 60 patients," Journal of Dental Implants, Original Article vol. 3, no. 1, pp. 3-8, 2013, doi: 10.4103/0974-6781.111659.
    [14] S. J. Ding, C. P. Ju and J. H. Lin, "Characterization of hydroxyapatite and titanium coatings sputtered on Ti-6Al-4V substrate," J Biomed Mater Res, vol. 44, no. 3, pp. 266-79, 1999, doi: 10.1002/(sici)1097-4636(19990305)44:3<266::aid-jbm5>3.0.co;2-4.
    [15] S. N. Baker and G. A. Baker, "Luminescent carbon nanodots: emergent nanolights," Angew Chem Int Ed Engl, vol. 49, no. 38, pp. 6726-44, 2010, doi: 10.1002/anie.200906623.
    [16] A. N. Natali, E. L. Carniel and P. G. Pavan, "Investigation of viscoelastoplastic response of bone tissue in oral implants press fit process," J Biomed Mater Res B Appl Biomater, vol. 91, no. 2, pp. 868-875, 2009, doi: 10.1002/jbm.b.31469.
    [17] J. Y. Martin, Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Lankford, Jr., D. D. Dean, D. L. Cochran and B. D. Boyan, "Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63)," J Biomed Mater Res, vol. 29, no. 3, pp. 389-401, 1995, doi: 10.1002/jbm.820290314.
    [18] H. Kurzweg, R. B. Heimann and T. Troczynski, "Adhesion of thermally sprayed hydroxyapatite-bond-coat systems measured by a novel peel test," J Mater Sci Mater Med, vol. 9, no. 1, pp. 9-16, 1998, doi: 10.1023/a:1008822309486.
    [19] D. H. Shin, T. Shokuhfar, C. K. Choi, S. H. Lee and C. Friedrich, "Wettability changes of TiO2 nanotube surfaces," Nanotechnology, vol. 22, no. 31, p. 315704, 2011, doi: 10.1088/0957-4484/22/31/315704.
    [20] R. A. Gittens, T. McLachlan, R. Olivares-Navarrete, Y. Cai, S. Berner, R. Tannenbaum, Z. Schwartz, K. H. Sandhage and B. D. Boyan, "The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation," Biomaterials, vol. 32, no. 13, pp. 3395-403, 2011, doi: 10.1016/j.biomaterials.2011.01.029.
    [21] Z. Schwartz and B. D. Boyan, "Underlying mechanisms at the bone-biomaterial interface," J Cell Biochem, vol. 56, no. 3, pp. 340-7, 1994, doi: 10.1002/jcb.240560310.
    [22] X. Chen and S. S. Mao, "Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications," Chem Rev, vol. 107, no. 7, pp. 2891-959, 2007, doi: 10.1021/cr0500535.
    [23] X. Zhou, N. T. Nguyen, S. Özkan and P. Schmuki, "Anodic TiO2 nanotube layers: Why does self-organized growth occur-A mini review," Electrochemistry Communications, vol. 46, 2014, doi: 10.1016/j.elecom.2014.06.021.
    [24] D. Khudhair, A. Bhatti, Y. Li, H. A. Hamedani, H. Garmestani, P. Hodgson and S. Nahavandi, "Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations," Materials Science and Engineering: C, vol. 59, pp. 1125-1142, 2016, doi: https://doi.org/10.1016/j.msec.2015.10.042.
    [25] N. B. Kondrikov, P. L. Titov, S. A. Schegoleva and M. A. Khorin, "Influence of Formation Conditions on the Level of Arrays Ordering of Anodic Titanium Oxide Nanotubes," Physics Procedia, vol. 86, pp. 37-43, 2017, doi: https://doi.org/10.1016/j.phpro.2017.01.015.
    [26] D. Kowalski, D. Kim and P. Schmuki, "TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications," Nano Today, vol. 8, no. 3, pp. 235-264, 2013, doi: https://doi.org/10.1016/j.nantod.2013.04.010.
    [27] M. A. A. Taib, K. A. Razak, M. Jaafar and Z. Lockman, "Initial growth study of TiO2 nanotube arrays anodised in KOH/fluoride/ethylene glycol electrolyte," Materials & Design, vol. 128, pp. 195-205, 2017, doi: https://doi.org/10.1016/j.matdes.2017.04.097.
    [28] H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Science, vol. 268, no. 5216, pp. 1466-8, 1995, doi: 10.1126/science.268.5216.1466.
    [29] M. Pardavi-Horvath, P. E. Si, M. Vazquez, W. O. Rosa and G. Badini, "Interaction effects in Permalloy nanowire systems," Journal of Applied Physics, vol. 103, no. 7, 2008, doi: 10.1063/1.2833304.
    [30] I. Paramasivam, H. Jha, N. Liu and P. Schmuki, "A Review of Photocatalysis using Self-organized TiO 2 Nanotubes and Other Ordered Oxide Nanostructures," Small (Weinheim an der Bergstrasse, Germany), vol. 8, pp. 3073-103, 2012, doi: 10.1002/smll.201200564.
    [31] P. Roy, S. P. Albu and P. Schmuki, "TiO2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops," Electrochemistry Communications, vol. 12, no. 7, pp. 949-951, 2010, doi: https://doi.org/10.1016/j.elecom.2010.04.029.
    [32] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin and M. Aucouturier, "Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy," Surface and Interface Analysis, vol. 27, no. 7, pp. 629-637, 1999, doi: https://doi.org/10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0.
    [33] B. O. Aronsson, J. Lausmaa and B. Kasemo, "Glow discharge plasma treatment for surface cleaning and modification of metallic biomaterials," J Biomed Mater Res, vol. 35, no. 1, pp. 49-73, 1997, doi: 10.1002/(sici)1097-4636(199704)35:1<49::aid-jbm6>3.0.co;2-m.
    [34] N. K. Awad, S. L. Edwards and Y. S. Morsi, "A review of TiO2 NTs on Ti metal: Electrochemical synthesis, functionalization and potential use as bone implants," Materials Science and Engineering: C, vol. 76, pp. 1401-1412, 2017, doi: https://doi.org/10.1016/j.msec.2017.02.150.
    [35] J. M. Macák, H. Tsuchiya and P. Schmuki, "High-aspect-ratio TiO2 nanotubes by anodization of titanium," Angew Chem Int Ed Engl, vol. 44, no. 14, pp. 2100-2, 2005, doi: 10.1002/anie.200462459.
    [36] A. Ghicov, H. Tsuchiya, J. Macak and P. Schmuki, "Titanium Oxide Nanotubes Prepared in Phosphate Electrolytes," Electrochemistry Communications, vol. 7, 2005, doi: 10.1016/j.elecom.2005.03.007.
    [37] Z. Q. Yao, Y. Ivanisenko, T. Diemant, A. Caron, A. Chuvilin, J. Z. Jiang, R. Z. Valiev, M. Qi and H. J. Fecht, "Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation," Acta Biomaterialia, vol. 6, no. 7, pp. 2816-2825, 2010, doi: https://doi.org/10.1016/j.actbio.2009.12.053.
    [38] S. Oh, C. Daraio, L. H. Chen, T. R. Pisanic, R. R. Fiñones and S. Jin, "Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes," J Biomed Mater Res A, vol. 78, no. 1, pp. 97-103, 2006, doi: 10.1002/jbm.a.30722.
    [39] K. S. Brammer, C. Choi, C. J. Frandsen, S. Oh, G. Johnston and S. Jin, "Comparative cell behavior on carbon-coated TiO2 nanotube surfaces for osteoblasts vs. osteo-progenitor cells," Acta Biomater, vol. 7, no. 6, pp. 2697-703, 2011, doi: 10.1016/j.actbio.2011.02.039.
    [40] K. Das, S. Bose and A. Bandyopadhyay, "TiO2 nanotubes on Ti: Influence of nanoscale morphology on bone cell-materials interaction," J Biomed Mater Res A, vol. 90, no. 1, pp. 225-37, 2009, doi: 10.1002/jbm.a.32088.
    [41] B. S. Smith, S. Yoriya, T. Johnson and K. C. Popat, "Dermal fibroblast and epidermal keratinocyte functionality on titania nanotube arrays," Acta Biomater, vol. 7, no. 6, pp. 2686-96, 2011, doi: 10.1016/j.actbio.2011.03.014.
    [42] K. Burns, C. Yao and T. J. Webster, "Increased chondrocyte adhesion on nanotubular anodized titanium," Journal of Biomedical Materials Research Part A, vol. 88A, no. 3, pp. 561-568, 2009, doi: https://doi.org/10.1002/jbm.a.31899.
    [43] K. Brammer, S. Oh, C. Frandsen, S. Varghese and S. Jin, "Nanotube surface triggers increased chondrocyte extracellular matrix production," Materials Science and Engineering: C, vol. 30, pp. 518-525, 2010, doi: 10.1016/j.msec.2010.01.013.
    [44] L. Peng, M. L. Eltgroth, T. J. LaTempa, C. A. Grimes and T. A. Desai, "The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation," Biomaterials, vol. 30, no. 7, pp. 1268-72, 2009, doi: 10.1016/j.biomaterials.2008.11.012.
    [45] K. C. Popat, L. Leoni, C. A. Grimes and T. A. Desai, "Influence of engineered titania nanotubular surfaces on bone cells," Biomaterials, vol. 28, no. 21, pp. 3188-97, 2007, doi: 10.1016/j.biomaterials.2007.03.020.
    [46] S. Bauer, J. Park, K. v. d. Mark and P. Schmuki, "Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes," Acta Biomaterialia, vol. 4, no. 5, pp. 1576-1582, 2008, doi: https://doi.org/10.1016/j.actbio.2008.04.004.
    [47] L. Zhang, U. D. Hemraz, H. Fenniri and T. J. Webster, "Tuning cell adhesion on titanium with osteogenic rosette nanotubes," J Biomed Mater Res A, vol. 95, no. 2, pp. 550-63, 2010, doi: 10.1002/jbm.a.32832.
    [48] K. C. Popat, M. Eltgroth, T. J. LaTempa, C. A. Grimes and T. A. Desai, "Titania Nanotubes: A Novel Platform for Drug-Eluting Coatings for Medical Implants?," Small, vol. 3, no. 11, pp. 1878-1881, 2007, doi: https://doi.org/10.1002/smll.200700412.
    [49] H. Matsuno, A. Yokoyama, F. Watari, M. Uo and T. Kawasaki, "Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium," Biomaterials, vol. 22, no. 11, pp. 1253-62, 2001, doi: 10.1016/s0142-9612(00)00275-1.
    [50] K. Tamura, N. Takashi, T. Akasaka, I. D. Roska, M. Uo, Y. Totsuka and F. Watari, "Effects of Micro/Nano Particle Size on Cell Function and Morphology," Key Engineering Materials, vol. 254-256, pp. 919-922, 2004, doi: 10.4028/www.scientific.net/KEM.254-256.919.
    [51] S. G. Márquez-Ramírez, N. L. Delgado-Buenrostro, Y. I. Chirino, G. G. Iglesias and R. López-Marure, "Titanium dioxide nanoparticles inhibit proliferation and induce morphological changes and apoptosis in glial cells," Toxicology, vol. 302, no. 2, pp. 146-156, 2012, doi: https://doi.org/10.1016/j.tox.2012.09.005.
    [52] B. L. Farrugia, J. M. Whitelock, M. Jung, B. McGrath, R. L. O'Grady, S. J. McCarthy and M. S. Lord, "The localisation of inflammatory cells and expression of associated proteoglycans in response to implanted chitosan," Biomaterials, vol. 35, no. 5, pp. 1462-77, 2014, doi: 10.1016/j.biomaterials.2013.10.068.
    [53] G. Longo, M. Girasole, G. Pompeo, A. Cricenti, C. Misiano, A. Acclavio, A. C. Tizzoni, L. Mazzola, P. Santini, L. Politi and R. Scandurra, "Effect of titanium carbide coating by ion plating plasma-assisted deposition on osteoblast response: A chemical, morphological and gene expression investigation," Surface and Coatings Technology, vol. 204, no. 16, pp. 2605-2612, 2010, doi: https://doi.org/10.1016/j.surfcoat.2010.02.007.
    [54] M. Brama, N. Rhodes, J. Hunt, A. Ricci, R. Teghil, S. Migliaccio, C. D. Rocca, S. Leccisotti, A. Lioi, M. Scandurra, G. De Maria, D. Ferro, F. Pu, G. Panzini, L. Politi and R. Scandurra, "Effect of titanium carbide coating on the osseointegration response in vitro and in vivo," Biomaterials, vol. 28, no. 4, pp. 595-608, 2007, doi: 10.1016/j.biomaterials.2006.08.018.
    [55] R. Koc, C. Meng and G. Swift, "Sintering properties of submicron TiC powders from carbon coated titania precursor," Journal of Materials Science, vol. 35, pp. 3131-3141, 2000, doi: 10.1023/A:1004876121000.
    [56] S. El-Eskandarany, "Structure and Properties of Nanocrystalline TiC Full-Density Bulk Alloy Consolidated from Mechanically Reacted Powders," Journal of Alloys and Compounds, vol. 305, pp. 225-238, 2000, doi: 10.1016/S0925-8388(00)00692-7.
    [57] Y. Zhu, W. Wang, X. Jia, T. Akasaka, S. Liao and F. Watari, "Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD," Applied Surface Science, vol. 262, pp. 156-158, 2012, doi: 10.1016/j.apsusc.2012.03.152.
    [58] R. Zanoni, C. A. Ioannidu, L. Mazzola, L. Politi, C. Misiano, G. Longo, M. Falconieri and R. Scandurra, "Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration," Materials Science and Engineering: C, vol. 46, pp. 409-416, 2015, doi: 10.1016/j.msec.2014.10.073.
    [59] Q. Huang, Y. Yang, D. Zheng, R. Song, Y. Zhang, P. Jiang, E. A. Vogler and C. Lin, "Effect of construction of TiO(2) nanotubes on platelet behaviors: Structure-property relationships," Acta Biomater, vol. 51, pp. 505-512, 2017, doi: 10.1016/j.actbio.2017.01.044.
    [60] K. Yuan, Y. J. Chan, K. C. Kung and T. M. Lee, "Comparison of osseointegration on various implant surfaces after bacterial contamination and cleaning: a rabbit study," Int J Oral Maxillofac Implants, vol. 29, no. 1, pp. 32-40, 2014, doi: 10.11607/jomi.2436.
    [61] W.-C. Chou, R. C. C. Wang, C.-L. Huang and T.-M. Lee, "The effect of plasma treatment on the osseointegration of rough titanium implant: A histo-morphometric study in rabbits," Journal of Dental Sciences, vol. 13, no. 3, pp. 267-273, 2018, doi: https://doi.org/10.1016/j.jds.2018.06.002.
    [62] R. D. Lillie, P. Pizzolato and L. L. Vacca, "Salt Zenker, a stable, nonhemolytic, formaldehyde-free fixative: the addition of salt to other acetic acid fixatives," Am J Clin Pathol, vol. 59, no. 3, pp. 374-5, 1973, doi: 10.1093/ajcp/59.3.374.
    [63] K. Narendrakumar, M. Kulkarni, O. Addison, A. Mazare, I. Junkar, P. Schmuki, R. Sammons and A. Iglič, "Adherence of oral streptococci to nanostructured titanium surfaces," Dent Mater, vol. 31, no. 12, pp. 1460-8, 2015, doi: 10.1016/j.dental.2015.09.011.
    [64] J. Park, S. Bauer, K. A. Schlegel, F. W. Neukam, K. von der Mark and P. Schmuki, "TiO2 nanotube surfaces: 15 nm--an optimal length scale of surface topography for cell adhesion and differentiation," Small, vol. 5, no. 6, pp. 666-71, 2009, doi: 10.1002/smll.200801476.
    [65] H. Omidvar, S. Goodarzi, A. Seif and A. R. Azadmehr, "Influence of anodization parameters on the morphology of TiO2 nanotube arrays," Superlattices and Microstructures, vol. 50, no. 1, pp. 26-39, 2011, doi: https://doi.org/10.1016/j.spmi.2011.04.006.
    [66] K. Indira, U. K. Mudali, T. Nishimura and N. Rajendran, "A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications," Journal of Bio- and Tribo-Corrosion, vol. 1, no. 4, p. 28, 2015, doi: 10.1007/s40735-015-0024-x.
    [67] Y.-H. Chang and H.-T. Chiu, "Nano-sizing titanium into titanium carbide by 1-chlorobutane," Journal of Materials Research, vol. 17, no. 11, pp. 2779-2782, 2002, doi: 10.1557/JMR.2002.0403.
    [68] J. Luthin and C. Linsmeier, "Characterization of Electron Beam Evaporated Carbon Films and Compound Formation on Titanium and Silicon," Physica Scripta Volume T, vol. 91, pp. 134-137, 2001, doi: 10.1238/Physica.Topical.091a00134.
    [69] J. Krzanowski and R. Leuchtner, "Chemical, Mechanical, and Tribological Properties of Pulsed‐Laser‐Deposited Titanium Carbide and Vanadium Carbide," Journal of the American Ceramic Society, vol. 80, pp. 1277-1280, 2005, doi: 10.1111/j.1151-2916.1997.tb02976.x.
    [70] J. Park, T. Back, W. C. Mitchel, S. S. Kim, S. Elhamri, J. Boeckl, S. B. Fairchild, R. Naik and A. A. Voevodin, "Approach to multifunctional device platform with epitaxial graphene on transition metal oxide," Scientific Reports, vol. 5, no. 1, p. 14374, 2015, doi: 10.1038/srep14374.
    [71] G. Chang, F. Sun, L. Wang, Z. Che, X. Wang, J. Wang, M. J. Kim and H. Zhang, "Regulated Interfacial Thermal Conductance between Cu and Diamond by a TiC Interlayer for Thermal Management Applications," ACS Applied Materials & Interfaces, vol. 11, no. 29, pp. 26507-26517, 2019, doi: 10.1021/acsami.9b08106.
    [72] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong and Y. Li, "Hydrogenated TiO2 Nanotube Arrays for Supercapacitors," Nano Letters, vol. 12, no. 3, pp. 1690-1696, 2012, doi: 10.1021/nl300173j.
    [73] M. Lopreiato, A. Mariano, R. Cocchiola, G. Longo, P. Dalla Vedova, R. Scandurra and A. Scotto d’Abusco, "Nanostructured TiC Layer is Highly Suitable Surface for Adhesion, Proliferation and Spreading of Cells," Condensed Matter, vol. 5, no. 2, p. 29, 2020. [Online]. Available: https://www.mdpi.com/2410-3896/5/2/29.
    [74] F. Veronesi, G. Giavaresi, M. Fini, G. Longo, C. A. Ioannidu, A. Scotto d'Abusco, F. Superti, G. Panzini, C. Misiano, A. Palattella, P. Selleri, N. Di Girolamo, V. Garbarino, L. Politi and R. Scandurra, "Osseointegration is improved by coating titanium implants with a nanostructured thin film with titanium carbide and titanium oxides clustered around graphitic carbon," Mater Sci Eng C Mater Biol Appl, vol. 70, no. Pt 1, pp. 264-271, 2017, doi: 10.1016/j.msec.2016.08.076.
    [75] G. Longo, C. A. Ioannidu, A. Scotto d'Abusco, F. Superti, C. Misiano, R. Zanoni, L. Politi, L. Mazzola, F. Iosi, F. Mura and R. Scandurra, "Improving Osteoblast Response In Vitro by a Nanostructured Thin Film with Titanium Carbide and Titanium Oxides Clustered around Graphitic Carbon," PLoS One, vol. 11, no. 3, p. e0152566, 2016, doi: 10.1371/journal.pone.0152566.
    [76] F.-Z. Cui and D. Li, "A review of investigations on biocompatibility of diamond-like carbon and carbon nitride films," Surface and Coatings Technology, vol. 131, pp. 481-487, 2000, doi: 10.1016/S0257-8972(00)00809-4.
    [77] H.-Y. Wang, "The surface functionalities of self-assembled monolayers on titanium carbide nanotube arrays. ," National Cheng Kung University Master Thesis, pp. 26-36, 2018.

    無法下載圖示 校內:2027-07-31公開
    校外:2027-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE