| 研究生: |
郭承翔 Kuo, Cheng-Hsiang |
|---|---|
| 論文名稱: |
人類凝血酶調節素片段對於血管新生之功能性分析 Funtional Analysis of Thrombomodulin Domains in Angiogenesis |
| 指導教授: |
施桂月
Shi, Guey-Yueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 血管新生 、凝血酶調節素 |
| 外文關鍵詞: | Thrombomodulin, Angiogenesis |
| 相關次數: | 點閱:71 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
凝血酶調節素(TM)是一個鑲鉗在細胞膜上的醣蛋白質分子,主要是由五個結構區組成,包括從胺基端的類lectin結構區(D1),接續六重複的類上皮生長因子結構區(D2),絲胺酸/纈胺酸富含結構區(D3),細胞膜穿越區(D4),及細胞質結構區(D5)。凝血酶調節素一開始在內皮細胞被發現,並且作為抗凝血因子。當凝血酶與凝血酶調節素結合時,凝血酶的促凝血活性經由蛋白質C的活化作用而轉為抗凝血活性。而後續的研究發現在很多不同的細胞型態也有廣泛的凝血酶調節素的表現。以上的研究暗示著凝血酶調節素除了抗凝血之外也許還扮演了其它的生理角色。之前的研究指出凝血酶調節素的類上皮生長因子結構區對瑞士3T3細胞( Swiss 3T3 cells)有促進生長的活性。最近在我們的活體外和活體內實驗發現重組的人類凝血酶節調素結構區2到3蛋白可作為血管新生因子,因此本研究的主要目的是在探討不同凝血酶調節素結構區對於血管新生的影響。我們以酵母菌表現系統來表現不同組合的凝血酶調節素結構區,包含類lectin結構區(TMD1),類上皮生長因子結構區(TMD2),類上皮生長因子結構區到絲胺酸/纈胺酸富含結構區(TMD23),細胞膜外結構區(TMD123),第一個類上皮生長因子結構區到第三個類上皮生長因子結構區(TMD2EGF1-3),第四個類上皮生長因子結構區到第六個類上皮生長因子結構區(TMD2EGF4-6)。我們以鎳離子鉗合的親和性管柱來純化這些凝血酶調節素重組蛋白質。隨著在凝血酶調節素作為輔因子的活性測試,發現TMD23有高於TMD2百分之三十的活性。將TMD23與TMD2以100 ˚C煮沸三十分鐘後仍保有百分之五十的輔因子活性。以上說明凝血酶調節素結構區重組蛋白質與天然原型蛋白質一樣穩定。在腫瘤的血管新生模式實驗,腫瘤團塊和新生血管密度在TMD23處理組都有被提昇,但是在活體外的實驗TMD23並不會改變腫瘤細胞的生長速度。進一步比較不同凝血酶調節素結構區的血管新生活性;在DNA合成測試實驗,TMD23比TMD2和TMD123較會促進人類臍靜脈內皮細胞的DNA合成速率。在趨藥性實驗,TMD23可引發人類臍靜脈內皮細胞較強的移動性。在動物體的Matrigel分析,TMD23比TMD123更強地引起血管新生的現象。這隱含著TMD1似乎會干擾TMD23在活體內引起血管新生的可能性。隨及我們發現TMD1不僅會降低與抑制由上皮生長因子(EGF)對於人類臍靜脈內皮細胞所誘發的細胞質外訊息調控激酶(ERK)的活化及移動性;在小鼠的血管新生模式實驗中 ,TMD1亦減弱了由上皮生長因子所誘發的血管新生現象。而且在大鼠眼角膜微型口袋模式,我們也發現TMD1強烈的抑制由鹼性-纖維母細胞生長因子(bFGF)所誘發的血管新生象現。基於以上的結果我們認為TMD23相對於其它的凝血酶調節結構區有較強的誘發血管新生能力。再者,TMD1對於TMD23在血管新生的過程中扮演著相反的角色。
Thrombomodulin (TM) is an integral membrane glycoprotein composed of five domains, including N-terminal lectin-like domain (D1), followed by six tandem repeated epidermal growth factor (EGF)-like domain (D2), serine/threonine-rich domain (D3), transmembrane domain (D4), and cytoplasmic domain (D5). TM is initially recognized on endothelium and serves as an anticoagulant. Procoagulant activity of thrombin was converted to anticoagulant via protein C activation when thrombin bound to TM. Subsequent studies have shown broad expression of TM in a variety of cell types. It implies that TM may play other roles beyond that of anticoagulation. Previous study shows that EGF-like domain of TM possesses mitogenic activity in Swiss 3T3 cells. Recently, recombinant human TM domain 2-3 (TMD23) was found to be an angiogenic factor in our in vitro and in vivo studies. Therefore, this study aims to explore the effects of various TM domains in angiogenesis. The Pichica pastoris protein expression system was used to express distinct domains of TM, including lectin-like domain (TMD1), EGF-like domain (TMD2), EGF-like domain to serine/threonine-rich domain (TMD23), extracellular domain (TMD123), EGF1 to EGF3 (TMD2EGF1~3), and EGF4 to EGF6 (TMD2EGF4~6). The recombinant TM domains were purified by affinity nickel-chelating column chromatography. In the TM cofactor activity assay, TMD23 was 30% higher than TMD2. TMD23 and TMD2 still possessed 50 % thrombin’s cofactor activity after heating at 100 °C for 30 min. It suggests that recombinant TM domains are stable as natural TM. In tumor neoangiogenesis assay, tumor masses and microvessel density were both enhanced in TMD23-supplemented group. But TMD23 did not alter growth rate of tumor in the in vitro assay. The angiogenic activities of TM domains were further compared. In the BrdU incorporation assay, TMD23 had a higher activity than TMD2 and TMD123 to enhance DNA synthesis in human umbilical vein endothelial cells (HUVECs). In the chemotactic assay, TMD23 induced HUVECs migration more potently. In the in vivo Matrigel analysis, TMD23 strongly induced angiogenesis than TMD123. It implies that TMD1 may interfere with TMD23 to induce angiogenesis in vivo. Subsequently, we found that TMD1 not only down-regulated extracellular-signal-regulated kinase (ERK) activation, but also inhibited migration induced by EGF in HUVECs. And in murine angiogenesis model, TMD1 diminished EGF-induced angiogenesis. Furthermore, TMD1 potently inhibited angiogenesis in rat corneal micropocket model elicited by basic fibroblast growth factor (bFGF). Based on these results we conclude that TMD23 is more potent than the other TM domains in inducing angiogenic activity. Moreover, TMD1 plays a contrary role to TMD23 in the process of angiogenesis.
Boehme MW, Galle P, Stremmel W. Kinetics of thrombomodulin release and endothelial cell injury by neutrophil-derived proteases and oxygen radicals. Immunology. 107: 340-349, 2002
Boffa MC, Burke B, Haudenschild CC. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J Histochem Cytochem. 35: 1267-1276, 1987
Bussolino F, Albini A, Camussi G, Presta M, Viglietto G, Ziche M, Persico G. Role of soluble mediators in angiogenesis. Eur J Cancer. 32A: 2401-2412, 1996
Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vriese A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kB and mitogen-activated protein kinase pathways. J Exp Med. 196: 565-577, 2002
Corbacho AM, Martinez De La Escalera G, Clapp C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J Endocrinol. 173: 219-238, 2002
Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell. 87: 1161-1169, 1996
Dodd RB, Drickamer K. Lectin-like proteins in model organisms: implications for evolution of carbohydrate-binding activity. Glycobiology. 11: 71R-79R, 2001
Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Curr Top Microbiol Immunol. 237: 97-132, 1999
Esmon NL, Owen WG, Esmon CT. Isolation of a membrane-bound cofactor for thrombin-catalyzed activation of protein C. J Biol Chem. 257: 859-864, 1982
Ferrara N. Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol. 237: 1-30, 1999
Folkman J. Tumor angiogenesis: therapeutica implications. N Engl J Med. 285: 1182-1186, 1971
Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1: 27-31, 1995
Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. Definition of two angiogenic pathways by distinct αv integrins. Science. 270: 1500-1502, 1995
Gabius HJ. Animal lectins. Eur J Biochem. 243: 543-576, 1997
Grewal JS, Luttrell LM, Raymond JR. G protein-coupled receptors desensitize and down-regulate epidermal growth factor receptors in renal mesangial cells. J Biol Chem. 276: 27335-27334, 2001
Hamada H, Ishii H, Sakyo K, Horie S, Nishiki K, Kazama M. The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood. 86: 225-233, 1995
Hanly AM, Hayanga A, Winter DC, Bouchier-Hayes DJ. Thrombomodulin: tumor biology and prognostic implications. Eur J Surg Oncol. 31: 217-20, 2005
Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci USA. 92: 850-854, 1995
Honda G, Masaki C, Zushi M, Tsuruta K, Sata M. The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function. J Biochem (Tokyo). 118: 1030-1036, 1995
Horowitz A, Tkachenko E, Simons M. Fibroblast growth factor–specific modulation of cellular response by syndecan-4. J Cell Biol. 157: 715-725, 2004
Hosaka Y, Higuchi T, Tsumagari M, Ishii H. Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin. Cancer Letters 161: 231-240, 2000
Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin-mediated cell adhesion: Involvement of its lectin-like domain. J Biol Chem. 278: 46750-46759, 2003
Hurtado C, Granja AG, Bustos MJ, Nogal ML, Gonzalez de Buitrago G, de Yebenes VG, Salas ML, Revilla Y, Carrascosa AL. The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology. 326: 160-70, 2004
Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. Regulation of cell motility by mitogen-activated protein kinase, J. Cell Biol. 137: 481-492, 1997
Koyama T, Parkinson JF, Aoki N, Bang NU, Muller-Berghaus G, Preissner KT. Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. Br J Haematol. 78: 515-522, 1991
Liekens S, De Clercq E, Neyts J. Angiogenesis: regulators and clinical applications. Biochem Pharmacol. 61: 253-270, 2001
O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 79: 315-28, 1994
O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 88: 277-285, 1997
Peirce SM, Skalak TC. Microvascular remodeling: A complex continuum spanning angiogenesis to arteriogenesis. Microcirculation 10: 99-111
Presta M, Moscatelli D, Joseph-Silverstein J, Rifkin DB. Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNS synthesis, and migration. Mol Cell Biol. 6: 4060-4066, 1986
Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 11: 73-91, 1995
Salomaa V, Matei C, Aleksic N, Sansores-Garcia L, Folsom AR, Juneja H, Chambless LE, Wu KK. Soluble thrombomodulin as a predictor of incident coronary heart disease and symptom less carotid artery atherosclerosis in the Atherosclerosis Risk in Communities (ARIC) Study: a case-cohort study. Lancet. 353: 1729-1734, 1999
Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS, Wu HL. Evidence of Human Thrombomodulin Domain as a Novel Angiogenic Factor. Circulation. 111: 1627-1636, 2005
Simon MT, Pauloin A, Normand G, Lieu HT, Mouly H, Pivert G, Carnot F, Tralhao JG, Brechot C, Christa L. HIP/PAP stimulates liver regeneration after partial hepatectomy and combines mitogenic and anti-apoptotic functions through the PKA signaling pathway. FASEB J. 17: 1441-1450, 2003
Smyth SS, Patterson C. Tiny dancers: the integrin-growth factor nexus in angiogenic signaling. J. Cell Biol. 158: 17-21, 2002
Suzuki K, Kusumoto H, Hashimoto S. Isolation and characterization of thrombomodulin from bovine lung. Biochim Biophys Acta. 882: 343-52, 1986
Suzuki K, Kusumoto H, Deyashiki Y, Nishioka J, Maruyama I, Zushi M, Kawahara S, Honda G, Yamamoto S, Horiguchi S. Structure and expression of human TM, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J. 6: 1891-1897, 1987
Takano S, Kimura S, Ohdama S, Aoki N. Plasma thrombomodulin in health and diseases. Blood. 76: 2024-2029, 1990
Taraboletti G, Morbidelli L, Donnini S, Parenti A, Granger HJ, Giavazzi R, Ziche M. The heparin binding 25 kDa fragment of thrombospondin-1 promotes angiogenesis and modulates gelatinase and TIMP-2 production in endothelial cells. FASEB J. 14: 1674-1676, 2000.
Tezuka Y, Yonezswa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S, Yoshinaka H, Baba M, Fukumoto T, Aikou T, Sato E. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 55: 4196–4200, 1995
Tohda G, Oida K, Okada Y, Kosaka S, Okada E, Takahashi S, Ishii H, Miyamori I. Expression of thrombomodulin in atherosclerotic lesions and mitogenic activity of recombinant thrombomodulin in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 18: 1861-1869, 1998
Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. Oncogene 22: 6549-6556, 2003
Weis WI, Taylor ME, Drickamer K. The C-type lectin superfamily in the immune system. Immunol Rev. 63: 19-34, 1998
Wilhelm S, Schmitt M, Parkinson J, Kuhn W, Graeff H, Wilhelm OG. Thrombomodulin, a receptor for the serine protease thrombin, is decreased in primary tumors and metastases but increased in ascitic fluids of patients with advanced ovarian cancer FIGO IIIc. Int J Oncol. 13: 645-651, 1998
Yamamoto S, Mizoguchi T, Tamaki T, Ohkuchi M, Kimura S, Aoki N. Urinary thrombomodulin, its isolation and characterization. J Biochem (Tokyo). 113: 433-440, 1993