| 研究生: |
陳秉鈞 Chen, Ping-Chun |
|---|---|
| 論文名稱: |
高溫易淹水區域指認及人行舒適度調適策略 High temperature and flooding area identification and strategies for pedestrian comfort |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 都市熱島效應 、都市淹水 、生理等效溫度 、綠化保水 、遮蔭設施 、低衝擊開發 、降溫舒適 、減洪 、人行舒適度 |
| 外文關鍵詞: | urban heat island, urban flooding, physiological equivalent temperature, pedestrian comfort |
| 相關次數: | 點閱:143 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著氣候變遷,許多研究發現全球各地過去數十年強降雨量隨全球溫度的上升而增加 (Karl and Knight 1998, Goswami et al. 2006, Lau and Wu 2007),台灣在都市維持高密度發展的框架下將面臨都市高溫、都市水患...等複合式災害衝擊,其不僅限於建成環境,對居民健康與生活品質將產生更多層面的負面影響。為了因應熱災與淹水所帶來的衝擊並提升居民之生活舒適性。本研究選定都市發展程度高且位於盆地地形,容易蓄熱、午後雷陣雨頻繁易淹水之台北市市中心區作為研究範圍,藉由整合災害風險之三個因素,危害度、暴露度以及脆弱度/調適能力指認熱、水災發生高風險範圍並對其提出調適策略以及量化行人舒適度提升效益。首先建立熱及水災之複合式風險評估模式來指認危害度高之範圍並進一步加入行人密集集中區域,進行既有建成環境的災害危害度以及暴露程度分析,指認災害風險高、潛在人流集中之範圍,作為未來居民步行等舒適及健康度改善的建議區域。
複合式風險評估分為熱及水災兩部分,熱災評估方式以BCLab都會區高密度溫溼度即時量測網(High density Street-level Air temperature observations Network, HiSAN)即時監測數據、中央氣象局逐時氣象監測資料,透過RayMan換算之生理等效溫度(Physiological Equivalent Temperature , PET)做為評估指標,而水災則以降雨強度為78.8mm/hr之臺北市降雨淹水模擬圖作為依據並將兩項指標以100m*100m之網格呈現統計標準化之結果,指認危害度高風險範圍。
潛在行人集中之區域則以107年臺北市民眾日常使用運具狀況摘要分析為依據,其數據指出捷運為所有公共運具中使用占比最高之運輸選擇並且依照人均步行可接受時間,界定捷運站出站五分鐘步行範圍內步行路徑為潛在人流集中範圍。
針對上述區域,本研究提出脆弱度調適策略,如:規劃低衝擊開發(Low Impact Development , LID)、遮蔭以及綠化保水等設施並藉由本研究建立之生理等效溫度(PET)預測式量化建議施作情境,模擬環境改善後之情形,以評估其對於人體舒適性提升之效果。此研究成果期能指認高溫、高淹水等風險區域並得以指認綠化保水、低衝擊開發設施之優先施作範圍以及具體估算人體舒適性提升效益。
Over the past few decades, Heavy rainfall has increased with the rise of air temperature worldwide. As high-density urban development in Taiwan so as to mitigate the impact of heat stress and flooding problems further to elevate the comfort of residents among the city. In this study, The downtown area of Taipei City is selected as the study area and the study was divided into three parts. First, by integrating three factors of disaster hazard, exposure, and vulnerability to identify areas at high risk of heat stress and flooding. Second, focus on this area to propose adaptation strategies and finally use multiple regression analysis and buffer analysis to establish Physiological Equivalent Temperature(PET), Mean radiant temperature(Tmrt) and air temperature(Ta) formulas to quantify the benefits of environmental improvement strategies.
The results show that a 15% increase in greening and permeable area would reduce 0.4 degree in Physiological Equivalent Temperature, and a further increase to 50% would reduce nearly 1 degree in Physiological Equivalent Temperature. Besides, the study also showed that if reducing 0.07 in sky view factor(SVF) would result in a 0.39 degree reduction in Physiological Equivalent Temperature.
The results of the study are expected to identify risk areas of high temperature and high flooding so as to identify priorities for greening and implementing Low Impact Development(LID) facilities, and quantify the benefits of pedestrian comfort.
西文文獻
1. Abdul Naser Majidi,Zoran Vojinovic,Alida Alves,Sutat Weesakul,Arlex Sanchez,Floris Boogaard and Jeroen Kluck. (2019). Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement .
2. BOSTONofCITY. (2022). HEAT RESILIENCE SOLUTIONS FOR BOSTON. BOSTON.
3. Climate change 2014: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). (2014). 頁 1820.
4. CLIMATE READY BOSTON EXECUTIVE SUMMARY. (2016). BOSTON.
5. Floris Boogaard,Zoran Vojinovic,Yu-Cheng Chen,Jeroen Kluck,Tzu-Ping Lin. (2017). High Resolution Decision Maps for Urban Planning: A Combined Analysis of Urban Flooding and Thermal Stress Potential In Asia and Europe .
6. GoswamiN., V. Venugopal, D. Sengupta, M. S. Madhusoodanan, and P. K. XavierB. (2006). Increasing trend of extreme rain events over India in a warming environment. Science, 314, 頁 1442-1445.
7. KarlR., and R. W. KnightT. (1998). Secular trend of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc., 79, 頁 231-242.
8. LauM., and H. T. WuK. (2007). Detecting trends in tropical rainfall characteristics, 1979-2003. Int. J. Climatol., 27, 頁 979-988.
9. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). (IPCC.2012). 頁 582.
10. RiddM.K. (1995). Exploring a V-I-S (Vegetation-Impervious Surface-Soil) Model for Urban Ecosystem Analysis through Remote Sensing. International Journal of Remote Sensing, 16, 頁 2165-2185.
11. Vinayak Rao S R,Harshitha G,Gagana G M,Shivaraj K R,Yathish G R. (2020年06月). UMBRELLA DESIGN FOR RAIN WATER HARVESTING AND HARNESSING SOLAR ENERGY AT C.I.T COLLEGE CAMPUS GUBBI, 頁 744-745.
12. (2021). WORKING GROUP III CONTRIBUTION TO THE IPCC SIXTH ASSESSMENT REPORT (AR6). INTERGOVERNMENTAL PANEL ON climate change,IPCC.
中文文獻
1. Dr.A氣候變遷災害風險調適平台. (2022). 擷取自 https://dra.ncdr.nat.gov.tw/
2. 水環境低衝擊開發設施操作手冊. (2016). 內政部營建署.
3. 王禹方. (民109年). 應用高密度地面氣溫測量網(HiSAN)探討三維熱環境特徵及預測都市熱舒適分布.
4. 林子平. (民111年). 臺北市戶外熱環境特徵調查及熱舒適提昇計畫. 台南市: 國立成功大學建築學系.
5. 林憲德、陳冠廷、郭曉青. (2001年12月01日). 台灣中型都市熱島現象與土地利用之觀測解析Experimental Analyses on the Urban Heat Island Effect for the Middle Scale Cities in Taiwan. 規劃學報;28期, 頁 47-64.
6. 陳韻如、林宣汝、劉俊志、連琮勳、陳永明. (民109年). 應用統計降尺度日資料於淹水災害風險圖 . 國家災害防救科技中心.
7. 黃淑靜. (2012). 不同遮陰形式下戶外空間溫熱環境舒適之研究-以公車候車亭為例Outdoor thermal comfortable environment of different shading types-An example for bus shelters.
8. 楊明叡. (民110年). 都市熱島指標評估系統之建立及應用Establishment and application of Urban Heat Island Index Evaluation.
9. 廖昱捷. (民107年). 應用高密度地面氣溫量測網(HiSAN)於氣溫與土地利用及覆蓋之分析.
10. 潘宗毅,陳思瑋,廖啟勳,張高華,張倉榮. (民104年年8月). 由溫度、水氣、降雨量分析大臺北地區之熱島效應. 熱島效應對臺北都會區水文型態之影響評估.
11. 潘威翰,林熙禎,陳棅易. (2021年6月). 應用開放資料分析都市功能性區域與人潮分佈. 電子商務學報, 頁 1-20.
校內:2028-06-26公開