簡易檢索 / 詳目顯示

研究生: 黃仕吉
Huang, Shi-Gi
論文名稱: 應用於無線通訊系統之低功率迴旋碼解碼器
A Low Power Convolutional Code Decoder for Wireless Communication Systems
指導教授: 陳培殷
Chen, Pei-Yin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 50
中文關鍵詞: 維特比演算法低功率
外文關鍵詞: low power, Viterbi algorithm
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當資料在空氣中傳輸時,因為不可預期的雜訊干擾會導致資料錯誤,所以在資料傳送前會使用迴旋碼進行編碼,然後在接收端使用維特比演算法解碼。一般而言,在擔任手機核心的基頻晶片中,用維特比演算法實現的迴旋碼解碼器所需之功率消耗大約就佔了全部的三分之一,所以如果可以實現一個低功率的迴旋碼解碼器,可以大量地減少手機的消耗功率。
    維特比演算法要求相當高的運算複雜度,所以導致其電路的功耗很大,所以近年來提出的低功率維特比演算法都是著重在減少運算複雜度,然而它們的缺點就是犧牲了解碼的正確率,使得位元錯誤率變高。與它們不同,我們提出的迴旋碼解碼器使用事先偵測的方式將接收到的位元分為受到雜訊干擾與沒有受到雜訊干擾兩種,若判斷為沒有受到雜訊干擾,所以不需要進行錯誤更正,只需使用一個低成本的解碼器對其解碼,且此電路只要求極少的功耗。若位元判斷為受到雜訊干擾,則是使用維特比解碼器進行解碼。
    論文提出的低功率維特比解碼器是用Verilog 硬體描述語言進行電路設計並使用Artisan TSMC 0.18μm標準元件庫進行合成實現,其合成結果為63530個邏輯閘數,工作頻率則為200MHz。和其他維特比解碼器比較起來,我們提出的電路需要最少的功率消耗。

    We may code data with convolutional code before data transmitted. And we don’t know whether the noises exist or not when data transmits in wireless system. And the receiver will use the Viterbi algorithm to decode. In general, the base band chip’s power dissipation occupies nearly 1/3 of all power consumptions in a mobile phone when the base band chip implemented with Viterbi algorithm. If we can propose a low power convolutional code decoder, we might reduce mobile phone's power consumption massively.
    Viterbi algorithm has high power consumption because of the high complexity. In recent years, the low power Viterbi algorithm was proposed by reducing the operation complexity; however they sacrifice the bit error rate (BER). In the differences, we propose that the convolutional code decoder using preprocess divide the data into interfere with noises and do not interfere with noises. If not, it doesn’t need to do error correction, and only need using a low cost decoder to decode. The low cost decoder requested the only few power consumptions. If the data interfere with noise then we use the Viterbi decoder to decode the data.
    The VLSI architecture of our viterbi decoder was implemented by using Verilog HDL. We used Design Vision to synthesize the design with TSMC’s 0.18μm cell library. The synthesis results show that our design occupies 63530 gate counts at the clock rate of 200 MHz. As compared with other Viterbi decoders, our design requires
    the lowest power consumption.

    摘要 ...................................... I ABSTRACT .................................. II 誌謝 ...................................... III 目錄 ...................................... IV 表目錄 .................................... VI 圖目錄 .................................... VII 第一章 緒論................................ 1 1.1 研究背景................................1 1.2 研究動機和方向..........................2 1.3 論文組織................................3 第二章 迴旋碼與維特比演算法之介紹.......... 4 2.1 迴旋碼(CONVOLUTIONAL CODE) .............4 2.2 維特比(VITERBI ALGORITHM) ..............6 2.2.1 追溯(TRACE BACK)方法..................10 2.2.2 暫存器交換(REGISTER EXCHANGE)方法.....13 2.2.3 硬式決策(HARD DECISION) ..............15 2.2.4 軟式決策(SOFT DECISION) ..............16 第三章 具偵測功能之迴旋碼解碼演算法........ 19 3.1 具偵測功能之迴旋碼......................19 3.2 偵測方法................................20 3.3 解碼....................................22 3.4 主要構想................................26 3.5 與傳統維特比演算法之結果分析............28 第四章 具偵測功能之迴旋碼解碼器之硬體架構.. 30 4.1 具偵測功能之迴旋碼解碼器之硬體架構......30 4.1.1 結束狀態產生器之硬體架構..............31 4.1.2 低成本解碼器之硬體架..................32 4.1.3 低成本解碼器之硬體架..................33 4.2 運算模式................................34 4.2.1 處理受到雜訊干擾之接收位元............34 4.2.2 處理沒有受到雜訊干擾之接收位元........34 4.3 維特比解碼器之硬體架構..................35 4.3.1 分支計量值單元之硬體架構..............36 4.3.2 加-比較-選擇單元之硬體架構............37 4.3.3 存活記憶體單元之硬體架構..............38 第五章 軟體模擬與硬體驗證.................. 39 5.1 軟體模擬................................39 5.2 硬體模擬................................40 5.3 矽智產(IP)驗證流程......................41 5.4 硬體設計規格............................42 5.5 硬體數據................................44 第六章 結論與未來工作...................... 47

    [1] P. Elias, “Error-free coding,” IRE Trans. Inform Theory, vol. IT-4, pp.29-37, Sept. 1954.
    [2] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. IT-13, pp. 260-269, April 1967.
    [3] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11a, 1999.
    [4] Feasibility Study on 3GPP System to Wireless Local Area Network (WLAN) Interworking, Sept. 2003.
    [5] Physical Layer Standard for cdma2000 Spread Spectrum Systems, 3GPP2 Std. C.S0002-C, 2002.
    [6] M. Keating and P. Bricaud, “Reuse methodology manual for system-on-a-chip designs,” Kluwer Academic Publishers, 2002.
    [7] F. Chan and D. Haccoun, “Adaptive viterbi decoding of convolutional codes over memoryless channels,” IEEE Trans. Commun., vol. 45, pp. 1389-1400, Nov. 1997.
    [8] R. Tessier, S. Swaminathan, R. Ramaswamy, D. Goeckel, and W. Burleson, “A reconfigurable, power-efficient adaptive Viterbi decoder,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 4, pp. 484-488, April 2005.
    [9] Chien-Ching Lin, Yen-Hsu Shih, Hsie-Chia Chang, and Chen-Yi Lee, “Design of a power-reduction Viterbi decoder for WLAN applications,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 52, NO. 6, pp. 1148-1156, June 2005.
    [10] Chien-Ching Lin, Yen-Hsu Shih, Hsie-Chia Chang, and Chen-Yi Lee “A low power Turbo/Viterbi decoder for 3GPP2 applications,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., Vol. 14, No. 4, pp. 426-430, April 2006
    [11] J. Jin and C. Y. Tsui, “Low-power limited-search parallel state Viterbi decoder implementation based on scarce state transition,” IEEE Trans. Very Large Scale
    Integr. (VLSI) Syst., vol. 15, no. 10, pp. 1172-1176, Oct. 2007.
    [12] D. J. Lin, C. C. Lin, C. L. Chen, H. C. Chang, and C. Y. Lee, “A low-power Viterbi decoder based on scarce state transition and variable truncation length,” in
    Proc. IEEE Int. Symp. on Circuits Syst. , pp. 99-102, May 2007.
    [13] R. Cypher and C.B. Shung, “Generalized trace back techniques for survivor memory management in the viterbi algorithm,” Proc. GLOBECOM, vol. 2, pp. 1318–1322, Dec. 1990.
    [14] G. Feygin and P. Gulak, “Architectural tradeoffs for survivor sequence memory management in viterbi decoders,” IEEE Trans. Commun. , pp. 425–429, vol. 41, no. 3, Mar. 1993.
    [15] C. Rader, “Memory management in a viterbi decoder,” IEEE Trans. Commun., vol. 29, no. 9, pp. 1399–1401, Sept. 1981.
    [16] G.D. Forney, Jr., “Convolutional codes : maximum likelihood Ⅱ decoding,” Inform. Control, pp. 222-266, July 1974.
    [17] J.A. Heller and I.M. Jacobs, “Viterbi decoding for satellite and space communication,” IEEE Trans. Commun. Technol., vol. COM19, no. 5, pp. 835-848, Oct. 1971.
    [18] H. R. Sarrafzadeh, “State transparent convolutional codes,” Washington, DC: George Washington Univ., April 1994.
    [19] Daniel A. Marcus, Number fields, Springer Verlag, Appendix 2, Sept. 1977.
    [20] Fei Sun and Tong Zhang, “Parallel high-throughput limited search trellis decoder VLSI design,” IEEE Trans. on VLSI., Vol. 13, No. 9, pp. 1013-1022, Sept. 2005.
    [21] Fei Sun and Tong Zhang, “Low-power state-parallel relaxed adaptive Viterbi decoder,” IEEE Trans. on circuits and systems., Vol. 54, No. 5, pp. 1060-1068, May 2007.
    [22] C. D. Chien, K. P. Lu, Y. M. Chen, J. I. Guo, Y. S. Chu, and C. L. Su, “An area-efficient variable length decoder IP core design for MPEG-1/2/4 video coding applications,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 9, pp. 1172–1178, Sept. 2006.

    無法下載圖示 校內:2108-06-30公開
    校外:2108-06-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE