| 研究生: |
黃韋程 Huang, Wei-Cheng |
|---|---|
| 論文名稱: |
台中市北區住宅大樓租金之分析 Analysis of Apartment Rent Prices for the Northern District, Taichung |
| 指導教授: |
潘南飛
Pan, Nang-Fei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 實價登錄 、多元迴歸 、類神經網路 、房租 、不動產估價 |
| 外文關鍵詞: | Actual Price Registration System, Multiple Regression, Artificial Neural Network, Rent, Real Estate Appraisal |
| 相關次數: | 點閱:81 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來台灣房地產價格居高不下,政府為了落實居住正義開始推動實價登錄系統,以促使不動產交易價格透明化,然而過去幾年台灣的房價依舊處於穩定攀升的狀態,在房價所得比極高的情況下促使許多人將購屋需求轉為租屋需求,也促使政府開始於各大都會區興建社會住宅以增加都會區的就業人口,因此如何對住宅租金進行合理估價顯得非常重要。本研究採用實價登錄系統之租金資料,利用多元迴歸模式與類神經網路模式對2012年至2021年之台中市北區住宅大樓租金資料進行模型建立,並利用此模型對租金進行估價以及預測。
樣本的選取對於模型的建立極為重要,為了訓練出一個準確的住宅租金模型,本研究將樣本範圍限制在台中市北區,而建築物類型僅限於住宅大樓,不但能夠獲取足夠多的樣本資料,且能夠縮小租屋資料的區域條件差異。
經過本研究對於台中市北區住宅大樓的租金預測及分析後,發現多元迴歸模式在樣本較小的情況下表現較佳,類神經網路則會因為訓練集的資料過少而無法有效進行預測,而多元迴歸模式與類神經網路模式的R-squared分別約為0.74與0.83,平均絕對百分比誤差 (MAPE) 則是皆小於10%,顯示兩種模式對於租金預測有相當不錯的解釋能力,因此一般大眾或是政府機關應可將本研究的預測模式作為住宅租金估價的參考。
In recent years, Taiwan's house prices have remained high. To solve the housing problem, the government has begun to promote the Actual Price Registration System to promote the transparency of real estate transaction prices. However, in the past few years, Taiwan's housing prices have continued to rise steadily. The situation has prompted many people to turn their housing needs into rental housing needs, and it has also prompted the government to build social housing in major metropolitan areas to benefit the working population. Therefore, it is very important to have a reasonable valuation of residential rents. This research uses the rent data of the Actual Price Registration System and use multiple regression model and neural network model to build a model for the rent data of residential buildings in the North District of Taichung City from 2012 to 2021, then use these models to estimate and predict the rent.
After the research on the rental forecast and analysis of residential buildings in the North District of Taichung City, it is found that the multiple regression model performs better when the sample is small. The R-squared of the multiple regression model is 0.74, and the neural network model is 0.83. The mean absolute percentage error (MAPE) both are less than 10%, indicating that these models have quite good explanatory power for rent forecasting. The public or government may be able to use the forecast models of this study as a reference for residential rental valuation.
中文文獻:
1. 朱信忠,「Kolmogorov-Smirnov 統計測試法」,台電核能月刊, 324,56-66,2009。
2. 吳怡雯,「高級住宅樓層別價格之估算-以高雄市為例」,國立高雄科技大學金融研究所碩士論文,2020。
3. 李佳璋,「重劃區住宅價格之調查研究-以台南市虎尾寮及鄭子寮為例」,長榮大學土地管理與開發研究所碩士論文,2004。
4. 李宜頻,「新北市環境周邊設施對於租屋價格影響及空間資訊視覺化研究」,輔仁大學統計資訊學系應用統計碩士班論文,2017。
5. 林人和,「都市住宅區地價影響因素之研究-以台中市西區與北區為例」,國立政治大學地政研究所碩士論文,1991。
6. 林洵妤,「台灣地區女性購屋租屋選擇」,國立清華大學統計學研究所碩士論文,2009。
7. 林國民,「高雄市自有住宅特徵價格之研究」,國立成功大學都市計劃研究所碩士論文,1996。
8. 張斐章、張麗秋,「類神經網路導論-原理與應用, 第2版」,滄海圖書公司,2015。
9. 許智淵,「類神經網路技術與特徵價格法於台北市房價預測結果之比較研究」,國立臺北大學企業管理研究所碩士論文,2012。
10. 陳相如,「都市林特徵價格之研究—以台南市東區為例」,國立成功大學都市計劃研究所碩士論文,2005。
11. 彭建文,「台灣出租住宅市場與自有住宅市場價格調整關係之研究」,都市與計劃第31卷第4期,391-412,2004。
12. 彭建文、張金鶚,「總體經濟對房地產景氣影響之研究」,國科會人文及社會科學研究彙刊第10卷第3期,330-343,2000。
13. 彭晏玲,「台北市綠地效益之評價-特徵價格法之應用」,中國文化大學景觀研究所碩士論文,2005。
14. 曾炫學,「土石流發生臨界曲線之研究-模糊集合及類神經網路」,國立台灣大學土木工程研究所碩士論文,2003。
15. 簡祐緯,「人工智慧於住宅租金價格趨勢之研究」,國立台灣科技大學營建工程系碩士學位論文,13,2019。
16. 蘇志軻,「社會弱勢族群住宅租金補貼審核標準之研究」,國立中央大學營建管理研究所碩士論文,13,2016。
英文文獻 :
1. A. T. Court, “Hedonic Price Indexes with Automotive Example”, The Dynamics of Automobile Demand, General Motors, New York, 98-119, 1939.
2. Adair, A.S., J.N. Berry, and W.S. McGreal, “Hedonic modelling, housing submarkets and residential valuation”, Journal of property Research, 13(1), 67-83, 1996.
3. Adelman, I. & Griliches, Z. “On the Index of Quality Change”. Journal of the American Statistical Association, 56, 535-548, 1961.
4. Berry, M. J., & Linoff, G. “Data mining techniques: For marketing, sales, and customer support”, John Wiley & Sons, Inc. New York, NY, USA., 1997.
5. Dewi Rahardja, “Statistical Time-Series Forecast via Microsoft Excel (FORECAST.ETS) Built-In Function”, Quest Journals, Journal of Research in Applied Mathematics. Volume 7, Issue 11, 69-73, 2021.
6. Do, A.Q.,G. Grundnistski, “A Neural Network Analysis of the Effect of the Age on Housing Values”, Journal of Real Estate Research, 8, 252-264, 1993.
7. E. Michael Azoff, “Neural Network Time Series Forecasting of Financial Markets (1st ed.)”, John Wiley & Sons, Inc., New York, NY, USA, 1994.
8. F. V. Waugh, “Quality Factors Influencing Vegetable Prices”, Journal of Farm Economics, 10(2), 185-196, 1928.
9. Grupe, F. H., & Owrang, M. M., “Data Base Mining Discovering New Knowledge and Competitive Advantage”, Information Systems Management, 12(4), 26-31, 1995.
10. H. S. Houthakker, “Compensated Changes in Quantities and Qualities Consumed”, Review of Economic Studies, 19(3), 155-164, 1952.
11. Kleissner, C. “Data Mining for the enterprise”, Proceedings of the Thirty-First Hawaii International Conference on System Sciences, 1998.
12. Lewis, C. D, “Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fittin g.”, London; Boston: Butterworth Scientific., 1982.
13. R. A. Lippman, “An introduction to computing with neural nets”, IEEE ASSP Mag., vol. 4, no. 2, 4-22, 1987.
14. Ronald G. Ridker & John A. Henning, “The determinants of residential property values with special reference to air pollution”, The review of economics and statistics, 49(2), 246-257, 1967.
15. Rosenblatt, Frank, “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain”, Cornell Aeronautical Laboratory, Psychological Review, 65(6), 386-408, 1958.
16. Rumelhart, D., G. Hinton, & R. William, “Learning Internal Representations by Error Propagation. In Rumelhart, D. & J. McClelland (Eds.)”, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, MIT Press, Cambridge, MA, 318-362, 1986.
17. Sherwin Rosen, “Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition”, The Journal of Political Economy, 82(1), 34-55, 1974.
18. Vojislav, Kecman, “Learning and Soft Computing Support Vector Machines, Neural Networks, and Fuzzy logic Models”, Cambridge, MA: MIT Press., 2001.
19. Wong, K.C.,A. P. So,Y. C. Hung,K. Wang,M. L. Wolvertom (ed.)., “Real Estate Valuation Theory”, American Real Estate Society (ARES) Monograph, 2001.
20. Zhang, G., M. Y. Hu, B. E. Patuwo, and D. C. Indro, “Artificial neural networks in bankruptcy prediction: General Framework and Cross-Validation analysis”, Journal of Operational Research, 116, 16-32, 1999.