簡易檢索 / 詳目顯示

研究生: 張景喻
Chang, Ching-Yu
論文名稱: 研究p53突變對EGFR-TKI誘導肺癌抗藥動物模型之基因組完整性的影響
Studying the effect of p53 mutation on genomic integrity in EGFR-TKI induced lung cancer drug resistant animal model
指導教授: 洪建中
Hung, Jan-Jong
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 120
中文關鍵詞: 肺癌抗藥性基因組p53
外文關鍵詞: lung cancer, drug resistance, genome, p53
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是全世界死亡的主要疾病,原因是患者在治療期間會產生抗藥性,導致腫瘤復發。腫瘤的異質性是抗藥的主要成因。如何在治療期間保持基因組的完整性將有利於提高生存率。在癌症進展中 p53 的突變與基因組不穩定性有關。雖然已經有許多抗藥性的研究在體外得到解決,但抗藥性到現在仍然是一個臨床未解決的問題。在這項研究中,使用體內動物模型來探討在有或沒有 TP53 的情況下 EGFR-TKI 誘導抗藥性的基因組完整性。本研究構建了 EGFRL858R 和 EGFRL858R x TP53+/- 兩品系小鼠的抗藥模型。於 H&E 染色結果,發現藥物敏感和腫瘤抗藥之間的細胞類型不同,在抗藥腫瘤中出現類似肌成纖維細胞的細胞型態,而在 TP53 突變的細胞核質比較大。其次,辨識藥物敏感、腫瘤抗藥和 TP53 突變小鼠的基因表達圖譜,發現三組基因組的突變熱點發生在染色體的不同區域。在腫瘤抗藥的情況下,TP53 突變以依賴性和非依賴性的方式發生不同突變。最後,所有有趣的突變基因也在 TCGA 數據庫中人類肺癌組進行了分析。未來,可利用西方墨點法和 IHC 測定小鼠和臨床樣品的蛋白表現。該研究不僅建立了體內抗藥動物,且釐清在抗藥產生的情形,基因體的穩定性以 p53 依賴性或非依賴性的方式產生的突變圖譜,這將有助於預防癌症治療過程中產生的抗藥性問題。

    Cancer is a major cause of death worldwide. Many therapeutic strategies including surgery, chemotherapy, radiotherapy, target therapy and immune therapy have been developed up to now. However, drug resistance will be induced during the therapeutic period, subsequently leading recurrence. The heterogeneity of tumor is the major reason for inducing drug resistance. How to maintain the genomic integrity during therapeutic period will be beneficial for improving the survival rate. The p53 mutation occurred in cancer progression is involved in genomic instability. Although amount previous studies about drug resistance have been addressed in vitro, but this issue is still a clinical unmet up to now. In this study, we used in vivo animal model to explore the genomic integrity under TKI-induced drug resistance with or without TP53 haploinsufficiency. Two lines of mice, EGFRL858R and EGFRL858R x TP53+/-, have been constructed, thus induced cancer formation by doxycycline, subsequently treated with gefitinib for a long time until drug resistance. Several interesting findings have been found now. At first, the cellular types are very different between sensitive cancer and drug resistant cancer. One kind of myofibroblast-like cell was found in the lung tissue from drug resistant mice, not drug sensitive mice. Second, the gene expression profiles are distinguishable among sensitive, resistant and TP53 mutation mice. Third, the hotspots of drug-sensitive, drug resistance and loss of TP53 are induced in the different regions of chromosomes. Under drug resistant condition, chromosome 1 and chromosome 11 were highly mutation through the independent and dependent manner of TP53 mutation respectively. Finally, all the interesting mutation genes in the mice were also compared with the whole genome sequence of human lung cancer cohorts from TCGA. Data indicated that some genes are also mutated in clinical lung cancer patients. This study not only build up a in vivo drug resistant animal, but also provide the novel mutation profile in a TP53-dependent or independent manner during lung cancer progression and drug resistant period, which will contribute to the prevention of drug resistance during cancer therapy.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XII 附圖目錄 XIII 縮寫表 XIV 一、研究背景 1 1-1 前言 1 1-2 肺癌 (Lung cancer) 1 1-3 上皮生長因子受體酪胺酸抑制劑 (Epidermal growth factor receptor tyrosine kinase inhibitor, EGFR-TKI) 3 1-4 藥物抗藥性 (Drug resistance) 4 1-5 腫瘤蛋白 p53 (Tumor protein p53) 6 1-6 建立體內抗藥小鼠模型 (Drug-resistant mouse model in vivo) 7 1-7 研究目的 9 二、材料與方法 11 2-1 動物實驗 (Animal experiment) 11 2-2 蘇木精-伊紅染色 (hematoxylin and eosin stain, H&E stain) 11 2-3 馬森三色染色法 (Masson's trichrome stain) 11 2-4 萃取 DNA (genomic DNA extraction) 12 2-5 萃取 RNA (RNA extraction) 13 2-6 全基因體定序 (Whole genome sequencing) 14 2-7 生物資訊分析 (Bioinformatics analyses) 14 2-8 統計分析 (Statistics) 14 三、結果 16 3-1 EGFR-TKI 成功誘導EGFRL858R 誘導的肺癌小鼠以及 EGFRL858R x TP53+/- 誘導的肺癌小鼠產生抗藥 16 3-2 藥物敏感、抗藥與 TP53+/- 誘導抗藥的腫瘤細胞型態不同 17 3-3 藥物敏感、抗藥與 TP53+/- 誘導抗藥的基因組有不同的突 變基因 18 3-4 藥物敏感、抗藥與 TP53+/- 誘導抗藥的基因組突變熱點區 域不同 19 3-5 生物資訊分析相關突變基因的生理功能 20 3-6 部分突變基因會影響肺腺癌患者的生存率 22 四、討論 24 參考文獻 30 圖表 39 附錄 114

    Acharyya, S., Ladner, K.J., Nelsen, L.L., Damrauer, J., Reiser, P.J., Swoap, S. and Guttridge, D.C. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. The Journal of Clinical Investigation 114, 370-378, 2004.

    Al-Akra, L., Bae, D.H., Leck, L.Y.W., Richardson, D.R. and Jansson P.J. The biochemical and molecular mechanisms involved in the role of tumor micro-environment stress in development of drug resistance. Biochimica et Biophysica Acta-General Subjects 1863, 1390-1397, 2019.

    Bielecka-Dabrowa, A., Ebner, N., Dos Santos, M.R., Ishida, J., Hasenfuss, G. and von Haehling, S. Cachexia, muscle wasting, and frailty in cardiovascular disease. European Journal of Heart Failure 22, 2314-2326, 2020.

    Bodoor, K., Al-Ghabkari, A., Matalka, I., Haddad, Y., Alkhateeb, A., Jaradat, S., Jaradat, Z.W., Al-Ghazo, M., Abu-sheikha, A., Jalboush, S.A. and Jarun, Y. Assessment of p53 mutations, expression and prognosis in bladder cancer patients from Jordan: Identification of novel deletion mutations in the DNA-binding domain. Meta Gene 12, 33-42, 2017.

    Bukowski, K., Kciuk, M. and Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. International Journal of Molecular Sciences 21, 3233, 2020.

    Capecchi, M.R. The new mouse genetics: altering the genome by gene targeting. Trends Genet 5, 70-76, 1989.

    Chaft, J.E., Rimner, A., Weder, W., Azzoli, C.G., Kris M.G. and Cascone T. Evolution of systemic therapy for stages I-III non-metastatic non-small-cell lung cancer. Nature Reviews Clinical Oncology 18, 547-557, 2021.

    Chen, Y.C., Young, M.J., Chang, H.P., Liu, C.Y., Lee, C.C., Tseng, Y.L., Wang, Y.C., Chang, W.C. and Hung, J.J. Estradiol-mediated inhibition of DNMT1 decreases p53 expression to induce M2-macrophage polarization in lung cancer progression. Oncogenesis 11, 25, 2022.

    Cheon, D.J. and Orsulic, S. Mouse models of cancer. Annual Review of Pathology: Mechanisms of Disease 6, 95-119, 2011.

    Das, A.T., Tenenbaum, L. and Berkhout, B. Tet-On Systems For Doxycycline-inducible Gene Expression. Current Gene Therapy 16, 156-167, 2016.

    De Wever, O., Demetter, P., Mareel, M. and Bracke, M. Stromal myofibroblasts are drivers of invasive cancer growth. International Journal of Cancer 123, 2229-2238, 2008.

    Denayer, T., Stöhr, T. and Van Roy, M. Animal models in translational medicine: validation and prediction. New Horizons in Translational Medicine 2, 5-11, 2014

    Denys, H., Derycke, L., Hendrix, A., Westbroek, W., Gheldof, A., Narine, K., Pauwels, P., Gespach, C., Bracke, M. and De Wever, O. Differential impact of TGF-beta and EGF on fibroblast differentiation and invasion reciprocally promotes colon cancer cell invasion. Cancer Letters 266, 263-274, 2008.

    Duffy, M.J., Synnott, N.C., O'Grady, S. and Crown, J. Targeting p53 for the treatment of cancer. Seminars in Cancer Biology 79, 58-67, 2022.

    Feng, L. and Jin, F. Screening of differentially methylated genes in breast cancer and risk model construction based on TCGA database. Oncology Letters 16, 6407-6416, 2018.

    Fontoura, J.C., Viezzer, C., Dos Santos, F.G., Ligabue, R.A., Weinlich, R., Puga, R.D., Antonow, D., Severino, P. and Bonorino, C. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Materials Science and Engineering C-Materials for Biological Applications 107, 110264, 2020.

    Frese, K.K. and Tuveson, D.A. Maximizing mouse cancer models. Nature Review Cancer 7, 645-658, 2007.

    Ghosh, M., Saha, S., Bettke, J., Nagar, R., Parrales, A., Iwakuma, T., Van Der Velden, A.W.M. and Martinez, L.A. Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell 39, 494-508, 2021.

    Giam, C.Z. and Semmes, O.J. HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins: Tax and HBZ. Viruses 8, 161, 2016.

    Gibbons, D.L., Byers, L.A. and Kurie, J.M. Smoking, p53 mutation, and lung cancer. Molecular Cancer Research 12, 3-13, 2014.
    Girard, N. Optimizing outcomes in EGFR mutation-positive NSCLC: which tyrosine kinase inhibitor and when? Future Oncology 14, 1117-1132, 2018.

    Hafner, A., Bulyk, M.L., Jambhekar, A. and Lahav, G. The multiple mechanisms that regulate p53 activity and cell fate. Nature Reviews Molecular Cell Biology 20, 199-210, 2019.

    Harrison, P.T., Vyse, S. and Huang, P.H. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Seminars in Cancer Biology 61, 167-179, 2020.

    He, J., Huang, Z., Han, L., Gong ,Y. and Xie, C. Mechanisms and management of 3rd‑generation EGFR‑TKI resistance in advanced non‑small cell lung cancer (Review). International Journal of Oncology 59, 90, 2021

    Hess, J.M., Bernards, A., Kim, J., Miller, M., Taylor-Weiner, A., Haradhvala, N.J., Lawrence, M.S. and Getz, G. Passenger Hotspot Mutations in Cancer. Cancer Cell 36, 288-301, 2019.

    Hexiao, T., Yuquan, B., Lecai, X., Yanhong, W., Li, S., Weidong, H., Ming, X., Xuefeng, Z., Gaofeng, P., Li, Z., Minglin, Z., Zheng, T., Zetian, Y., Xiao, Z., Yi, C., Lanuti, M. and Jinping, Z. Knockdown of CENPF inhibits the progression of lung adenocarcinoma mediated by ERβ2/5 pathway. Aging 13, 2604-2625, 2021.

    Hsu, J.C., Wei, C., Yang, S., Lin, P., Lee, Y. and Lu, C.Y. Lung cancer survival and mortality in Taiwan following the initial launch of targeted therapies: an interrupted time series study. British Medical Journal Open 10, e033427, 2020.

    Hu, D. G., Marri, S., Mackenzie, P. I., Hulin, J. A., McKinnon, R. A. and Meech, R. The Expression Profiles and Deregulation of UDP-Glycosyltransferase (UGT) Genes in Human Cancers and Their Association with Clinical Outcomes. Cancers 13, 4491, 2021.

    Huang, J., Li, Z., Ding, Z., Luo, Q. and Lu, S. Different roles of myofibroblasts in the tumorigenesis of nonsmall cell lung cancer. Tumor Biology 37, 15525-15534, 2015.

    Huang, J. Q., Wei, F. K., Xu, X. L., Ye, S. X., Song, J. W., Ding, P. K., Zhu, J., Li, H. F., Luo, X. P., Gong, H., Su, L., Yang, L. and Gong, L. Y. SOX9 drives the epithelial–mesenchymal transition in non-small-cell lung cancer through the Wnt/β-catenin pathway. Journal of Translational Medicine 17, 143, 2019.
    Huang, J.W., Pan, H.J., Yao, W.Y., Tsao, Y.W., Liao, W.Y., Wu, C.W., Tung, Y.C. and Lee, C.H. Interaction between lung cancer cell and myofibroblast influenced by cyclic tensile strain. Lab on A Chip 13, 1114-1120, 2013.

    Jia, P., Pao, W. and Zhao, Z. Patterns and processes of somatic mutations in nine major cancers. BioMed Central Medical Genomics 7, 11, 2014.

    Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J.F., Wyczalkowski, M.A., Leiserson, M.D.M., Miller, C.A., Welch, J.S., Walter, M.J., Wendl, M.C., Ley, T.J., Wilson, R.K., Raphael, B.J. and Ding, L. Mutational landscape and significance across 12 major cancer types. Nature 502, 333-339, 2013.

    Katt, M.E., Placone, A.L., Wong, A.D., Xu, Z.S. and Searson, P.C. In Vitro Tumor Models: Advantages, Disadvantages, Variables, and Selecting the Right Platform. Frontiers in Bioengineering and Biotechnology 4, 12, 2016.

    Kawasaki, H., Saotome, T., Usui, T., Ohama, T. and Sato, K. Regulation of intestinal myofibroblasts by Kras-mutated colorectal cancer cells through heparin-binding epidermal growth factor-like growth factor. Oncology Reports 37, 3128-3136, 2017.

    Klimovich, B., Merle, N., Neumann, M., Elmshäuser, S., Nist, A., Mernberger, M., Kazdal, D., Stenzinger, A., Timofeev, O. and Stiewe, T. p53 partial loss-of-function mutations sensitize to chemotherapy. Oncogene 41, 1011-1023, 2022.

    Kong, S. L., Liu, X., Tan, S. J., Tai, J. A., Phua, L. Y., Poh, H. M., Yeo, T., Chua, Y. W., Haw, Y. X., Ling, W. H., Ng, R., Tan, T. J., Loh, K., Tan, D. S., Ng, Q. S., Ang, M. K., Toh, C. K., Lee, Y. F., Lim, C. T., Lim, T. and Lim, W. T. Complementary Sequential Circulating Tumor Cell (CTC) and Cell-Free Tumor DNA (ctDNA) Profiling Reveals Metastatic Heterogeneity and Genomic Changes in Lung Cancer and Breast Cancer. Frontiers in Oncology 11, 698551, 2021.

    Kühn, R. and Schwenk, F. Conditional Knockout Mice. Transgenic Mouse 209, 159-186, 2003.

    Kumar, S., Warrell, J., Li, S., McGillivray, P.D., Meyerson, W., Salichos, L., Harmanci, A., Martinez-Fundichely, A., Chan, C., Nielsen, M.M., Lochovsky, L., Zhang, Y., Li, X., Lou, S., Pedersen, J.S., Herrmann, C., Getz, G., Khurana, E. and Gerstein, M.B. Passenger Mutations in More Than 2,500 Cancer Genomes: Overall Molecular Functional Impact and Consequences. Cell 180, 915-927, 2020.

    Lee, J., Yakubov, B., Ivan, C., Jones, D. R., Caperell-Grant, A., Fishel, M., Cardenas, H. and Matei, D. Tissue Transglutaminase Activates Cancer-Associated Fibroblasts and Contributes to Gemcitabine Resistance in Pancreatic Cancer. Neoplasia 18, 689-698, 2016.

    Leroy, B., Anderson, M. and Soussi, T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Human Mutation 35, 672-688, 2014.

    Li, K., Yang, M., Liang, N. and Li, S. Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution (Review). Oncology Reports 37, 1347-1358, 2017a.

    Li, M.Y., Liu, L.Z. and Dong, M. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Molecular Cancer 20, 22, 2021a.

    Li, M. X., Zhang, M. Y., Dong, H. H., Li, A. J., Teng, H. F., Liu, A. L., Xu, N. and Qu, Y. Q. Overexpression of CENPF is associated with progression and poor prognosis of lung adenocarcinoma. International Journal of Medical Sciences 18, 494-504, 2021b.

    Li, Y.J., Lei, Y.H., Yao N., Wang, C.R., Hu, N., Ye, W.C., Zhang, D.M. and Chen, Z.S. Autophagy and multidrug resistance in cancer. Chinese Journal of Cancer Research 36, 52, 2017b.

    Liu, B., Bernard, B. and Wu, JH. Impact of EGFR point mutations on the sensitivity to gefitinib: insights from comparative structural analyses and molecular dynamics simulations. Proteins 65, 331-346, 2006.

    Longley, D.B. and Johnston, P.G. Molecular mechanisms of drug resistance. The Journal of Pathology 205, 275-292, 2005.

    Lu, T., Yang, X., Huang, Y., Zhao, M., Li, M., Ma, K., Yin, J., Zhan, C. and Wang, Q. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Management and Research 11, 943-953, 2019.

    McGranahan, N. and Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613-628, 2017.
    Mitsudomi, T. Advances in Target Therapy for Lung Cancer. Japanese Journal of Clinical Oncology 40, 101-106, 2010.

    Nakai, K., Hung, M.C. and Yamaguchi, H. A perspective on anti-EGFR therapies targeting triple-negative breast cancer. American Journal of Cancer Research 6, 1609-1623, 2016.

    Nan, X., Xie, C., Yu, X. and Liu, J. EGFR TKI as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer. Oncotarget 8, 75712-75726, 2017.

    Neophytou, C.M., Trougakos, I.P., Erin, N. and Papageorgis, P. Apoptosis Deregulation and the Development of Cancer Multi-Drug Resistance. Cancers 13, 4363, 2021.

    Oguri, T., Takahashi, T., Miyazaki, M., Isobe, T., Kohno, N., Mackenzie, P. I. and Fujiwara, Y. UGT1A10 is responsible for SN-38 glucuronidation and its expression in human lung cancers. Anticancer Research 24, 2893-2896, 2004.

    Ou, S.I., Cui, J., Schrock, A.B., Goldberg, M.E., Zhu, V.W., Albacker, L., Stephens, P.J., Miller, V.A. and Ali, S.M. Emergence of novel and dominant acquired EGFR solvent-front mutations at Gly796 (G796S/R) together with C797S/R and L792F/H mutations in one EGFR (L858R/T790M) NSCLC patient who progressed on osimertinib. Lung Cancer 108, 228-231, 2017.

    Ozga, A.J., Chow, M.T. and Luster, A.D. Chemokines and the immune response to cancer. Immunity 54, 859-874, 2021.

    Panda, M., Tripathi, S. K. and Biswal, B. K. SOX9: An emerging driving factor from cancer progression to drug resistance. Biochimica et Biophysica Acta- Review on Cancer 1875, 188517, 2021.

    Pardo, L. A. and Stühmer, W. The roles of K(+) channels in cancer. Nature Reviews Cancer 14, 39-48, 2014.

    Peng, S., Wang, K., Gu, Y., Chen, Y., Nan, X., Xing, J., Cui, Q., Chen, Y., Ge, Q., and Zhao, H. TRAF3IP3, a novel autophagy up-regulated gene, is involved in marginal zone B lymphocyte development and survival. Clinical and Experimental Immunology 182, 57-68, 2015.

    Qin, Y., Rodin, S., Simonson, O. E. and Hollande, F. Laminins and cancer stem cells: Partners in crime. Seminars in Cancer Biology 45, 3-12, 2017.
    Rausch, V., Sala, V., Penna, F., Porporato, P.E. and Ghigo, A. Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis 10, 1, 2021.

    Reddy, T.P., Choi, D.S., Anselme, A.C., Qian, W., Chen, W., Lantto, J., Horak, I.D., Kragh, M., Chang, J.C. and Rosato, R.R. Simultaneous targeting of HER family pro-survival signaling with Pan-HER antibody mixture is highly effective in TNBC: a preclinical trial with PDXs. Breast Cancer Research 22, 48, 2020.

    Sansregret, L., Vanhaesebroeck, B. and Swanton, C. Determinants and clinical implications of chromosomal instability in cancer. Nature Reviews Clinical Oncology 15, 139-150, 2018.

    Schabath, M.B. and Cote, M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiology Biomarkers and Prevention 28, 1563-1579, 2019.

    Scripture, C.D., Figg, W.D. and Sparreboom, A. Paclitaxel chemotherapy: from empiricism to a mechanism-based formulation strategy. Therapeutics and Clinical Risk Management 1, 107-114, 2005

    Seebacher, N.A., Krchniakova, M., Stacy, A.E., Skoda, J. and Jansson, P.J. Tumour Microenvironment Stress Promotes the Development of Drug Resistance. Antioxidants 10, 1801, 2021.

    Shah, D.R. and Masters, G.A. Precision Medicine in Lung Cancer Treatment. Surgical Oncology Clinics of North America 29, 15-21, 2020.

    Shum, A., Poljak, A., Bentley, N.L., Turner, N., Tan, T.C. and Polly, P. Proteomic profiling of skeletal and cardiac muscle in cancer cachexia: alterations in sarcomeric and mitochondrial protein expression. Oncotarget 9, 22001-22022, 2018.

    Si, W., Shen, J., Zheng, H. and Fan, W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clinical Epigenetics 11, 25, 2019.

    Soulie, P., Poupon, M.F., Remvikos, Y., Dutrillaux, B. and Muleris, M. Distinct chromosomal alterations associated with TP53 status of LoVo cells under PALA selective pressure: a parallel with cytogenetic pathways of colorectal cancers. Oncogene 18, 775-781, 1999.

    Strauss, B.S. Role in tumorigenesis of silent mutations in the TP53 gene. Mutation Research 457, 93-104, 2000.

    Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A. and Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians 71, 209-249, 2021.

    Tokunou, M., Niki, T., Eguchi, K., Iba, S., Tsuda, H., Yamada, T., Matsuno, Y., Kondo, H., Saitoh, Y., Imamura, H. and Hirohashi, S. c-MET expression in myofibroblasts: role in autocrine activation and prognostic significance in lung adenocarcinoma. The American Journal of Pathology 158,1451-63, 2001.

    Tracy, S., Mukohara, T., Hansen, M., Meyerson, M., Johnson, B.E. and Jänne, P.A. Gefitinib induces apoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Research 64,7241-7244, 2004.

    Unoki, M., Daigo, Y., Koinuma, J., Tsuchiya, E., Hamamoto, R. and Nakamura, Y. UHRF1 is a novel diagnostic marker of lung cancer. British Journal of Cancer 103, 217-222, 2010.

    Vitale, I., Shema, E., Loi, S. and Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nature Medicine 27, 212-224, 2021.

    Wang, J., Yang, F., Sun, Q., Zeng, Z., Liu, M., Yu, W., Zhang, P., Yu, J., Yang, L., Zhang, X., Ren, X. and Wei, F. The prognostic landscape of genes and infiltrating immune cells in cytokine induced killer cell treated-lung squamous cell carcinoma and adenocarcinoma. Cancer Biology and Medicine 18, 1134-1147, 2021.

    Wang, Y.C., Wu, Y.S., Hung, C.Y., Wang, S.A., Young, M.J., Hsu, T.I. and Hung, J.J. USP24 induces IL-6 in tumor-associated microenvironment by stabilizing p300 and β-TrCP and promotes cancer malignancy. Nature Communications 9, 3996, 2018.

    Xu, W., Zhu, H., Gu, M., Luo, Q., Ding, J., Yao, Y., Chen, F. and Wang, Z. DHTKD1 is essential for mitochondrial biogenesis and function maintenance. Federation of European Biochemical Societies Letters 587, 3587-3592, 2013.

    Young, M.J., Chen, Y.C., Wang, S.A., Chang, H.P., Yang, W.B., Lee, C.C., Liu, C.Y., Tseng, Y.L., Wang, Y.C., Sun, H.S., Chang, W.C. and Hung, J.J. Estradiol-mediated inhibition of Sp1 decreases miR-3194-5p expression to enhance CD44 expression during lung cancer progression. Journal of Biomedical Science 29, 3, 2022.

    Zhang, C., Liu, J., Xu, D., Zhang, T., Hu, W. and Feng, Z. Gain-of-function mutant p53 in cancer progression and therapy. Journal of Molecular Cell Biology 12, 674-687, 2020.

    Zhang, C., Xu, C., Gao, X. and Yao, Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 12, 2115-2132, 2022.

    Zheng, D., Limmon, G.V., Yin, L., Leung, N.H., Yu, H., Chow, V.T. and Chen, J. Regeneration of alveolar type I and II cells from Scgb1a1-expressing cells following severe pulmonary damage induced by bleomycin and influenza. PLoS One 7, e48451, 2012.

    Zhou, X., Hao, Q. and Lu, H. Mutant p53 in cancer therapy-the barrier or the path. Journal of Molecular Cell Biology 11, 293-305, 2019.

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE