簡易檢索 / 詳目顯示

研究生: 彭俊翔
Peng, Jiun-Shiang
論文名稱: 考量設備操作度之基因演算法於船舶機艙歧管配置之應用
The Application of Genetic Algorithm with Consideration of Equipment Operability on Branch Piping Arrangement in Ship’s Engine Room
指導教授: 林忠宏
Lin, Chung-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 107
中文關鍵詞: 管路佈置設備操作度量化性限制條件基因演算歧管
外文關鍵詞: Pipeline Arrangement, Dynamic Space Design, Quantifiable Constraints, Genetic Algorithm, branch pipeline
相關次數: 點閱:184下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 管路佈置是船舶設計中重要的設計步驟之一,在總體設計中占有很大的比重。船舶中管路佈置最為複雜的部分當屬機艙空間內各種設備間的聯繫,如何在有限空間內做到自動、省時、省材,以及符合船規的管路佈置,一直是造船技術研究中主要的發展方向,但隨著人因考量在現代工業中的角色日趨加重,船舶上人員的動態空間也逐漸被重視。
    本研究以船舶機艙上設備操作度(Operability)考量,為佈管設計時的量化性限制條件(quantifiable constraints),搭配各種佈管上的規範,應用基因演算法軟體(GeneHunter)與電腦輔助設計軟體(PDMS)發展出一組兼具理論與實用性的佈管設計系統,在經濟成本與人因成本之間取得平衡,並以基因演算法循環設計來進行歧管的設計,使得程式可進行單管路、多管路、歧管等管路設計。

    Piping arrangement of the ship is one of important design step in the overall design . The most complicated part of pipeline arrangement in ship is the contact between equipments in engine room. It has been the main development in the research of shipbuilding technique that how to achieve automatically, time-saving, and material saving but according to ship’s rules at the finite space in the field of current shipbuilding industry. But the personnel's dynamic space design in ship’s engine room is taken gradually when the Human Factors became important in the modern industry.
    This research is considering the operability of equipment in ship’s engine room as quantifiable constraint on the design of pipeline arrangement, and takes care of each kind of shipbuilding rules, to develop a pipeline design system with theory and practicability by the software applications of GeneHunter and PDMS. The system can achieve balance between cost and Human Factors, and calculates the optimization of pipeline arrangement. And using the cycle of Genetic Algorithm for branch pipeline design. so the program can be use for a single pipeline design ,multi-pipeline design and branch pipeline design .

    目錄 摘要 I ABSTRACT II 誌謝 III 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 研究方法與步驟 6 1.4 論文架構 7 第二章 研究原理 9 2.1 基因演算法 9 2.1.1 基本組織架構 10 2.1.2 收斂準則 23 2.1.3傳統基因演算法之改良方式 24 2.1.4 基因演算法之應用 24 2.2 模組化 26 2.2.1 標準化概念 26 2.2.2 模組化概念 27 2.2.3 模組化應用 27 2.3 多目標最佳化 28 2.3.1 多目標最佳化概念 28 2.3.2 工程最佳化設計概念 28 2.3.2 以權重法表示多目標函數 29 第三章 佈管空間與設備描述方法 31 3.1 數學化實體描述方法 32 3.1.1 建立設備內各基本體的長方體邊界 32 3.1.2 空間立方體化 34 3.1.3 區域搜尋法 35 3.1.4 碰撞檢查 37 3.2設備操作度評估方法 39 3.2.1以人因工程為準則進行船舶機艙操作度的評估 39 3.2.2操作度空間的劃分 40 3.3 3D電腦繪製系統 41 第四章 數學模型與程式設計 44 4.1數學模型之建立 44 4.1.1 設備長方體化模組與管路長方體化模組 44 4.1.2 設計變數 49 4.1.3 目標函數 55 4.2 管路佈置設計流程 62 4.3 歧點位置找尋 65 4.4 系統環境架構 70 4.5管路設計系統介面 71 第五章 機艙佈管分析與驗證 73 5.1 測試實例簡介 73 5.2 操作流程 74 5.3初始參數的設定 81 5.3.1 管路精確度 81 5.3.2族群大小 82 5.3.3 運算元參數選擇 83 5.4 系統驗證比較 84 5.4.1單管路徑測試實例 85 5.4.2歧管路徑測試實例 90 5.4.3既有管路障礙測試實例 97 第六章 結論與未來展望 101 6.1 結論 101 6.2 未來發展與建議 102 參考文獻 104 自述 107

    參考文獻
    [1] Guiradello, R. “Optimization of process plant layout”. PhD Dissertation, University of Wisconsin: Madison, 1993.
    [2] Hightower DW.A solution to line routing problems on the continuous plane. Proceedings of Sixth Design Automation Workshop,IEEE 1969:1-24
    [3] H Kimura and S Ikehira. “Automatic design for pipe arrangement considering valve operationality”. International Conference on Computer Applications in Shipbuilding. Shanghai, China Vol.2, pp. 121-126, 2009.
    [4] Ito, T. “A genetic algorithm approach to piping route path
    planning”. Journal of Intelligent Manufacturing, 10, pp. 103–114, 1999.
    [5] J. David Schaffer. “Multiple objective optimization with vector evaluated genetic algorithms”. Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93–100, 1985.
    [6] Kamepalli, H.B. “The optimal basics for Gas”. IEEE Potentials, Vol.20, 2001.
    [7] Lee, C. Y. “An algorithm for path connections and its applications”. IRE Transactions on Electronic Computers, EC-10, pp. 346-365, 1961.
    [8]P. Hajela and C.Y. Lin. “Genetic search strategies in multicriterion optimal design”. Structural Optimization, pp. 99-107, 1992.
    [9] Park J. and Storch R. “Pipe-routing Algorithm Development: Case Study of a Ship Engine Room Design”. Expert Syst. Appl, Vol. 23, pp. 299-309, 2002.
    [10] Peter O’ Gray. “The Age of Modularity”. Adams and Steele publishers, 1999.
    [11] Plant Design Management System(PDMS)User Manual. Version 11.5, England, 2003.
    [12] Wangdahl, G. E., Pollock, S. M., & Woodward, J. B. “Minimum trajectory pipe routing”. Journal of Ship Research, 18(1), pp. 44-49, 1974.
    [13] 王立瑋,2010,“考量設備操作度之基因演算法於船舶機艙佈管最佳化設計之應用”, 碩士論文,國立成功大學,造船暨船舶機械工程研究所。
    [14] 王立嫻, “基因演算法應用於三維管路佈置之研究”,碩士論文,國立成功大學,造船暨船舶機械工程研究所,2001。
    [15] 王順德,2002,“應用基因演算法於多層甲板結構物之最佳化設計”, 碩士論文,國立成功大學,造船暨船舶機械工程研究所。
    [16] 行政院勞工委員會/勞工安全衛生研究所/勞工委員會/勞工安全衛生研究所,勞工靜態與動態人體計測資料庫之量測,行政院勞工委員會勞工安全衛生研究所,1996。
    [17] 呂怡廷,“多目標基因演算法於鋼筋混凝土結構設計之應用”,碩士論文,國立交通大學,土木工程研究所,2008。
    [18] 呂廣英, “簡介模組化設計與應用” ,機械月刊, pp. 121-125,1985。
    [19] 李綺思,“結合基因演算法及類神經網路自動搜尋沸水式反應器升載路徑之研究”,博士論文,國立清華大學,工程與系統科學研究所,2007。
    [20]林英任,以結構主義的角度進行模組化產品特性與評估之研究,國立台灣大學機械工程研究所,碩士論文,1996。
    [21] 徐業良,工程最佳化設計,最佳化設計之數學模型,pp. 9-28,華泰,1995。
    [22]陳耀茂,品質保證,五南出版社,台北市,pp385-409,1983.
    [23]張巍贏,2007,“桁架結構最佳化設計使用基因演算法與窄化空間技術”,碩士論文,國立交通大學,土木工程研究所。
    [24] 郭啟洲, “電腦輔助三維自動化管路佈置之研究”,碩士論文,國立成功大學,造船暨船舶機械工程研究所,1999。
    [25] 劉惟信,機械最佳化設計 第二版,第一章 概述,PP.1-2~1-17,第二章 最佳化設計中目標函數的數學分析基礎, PP.2-2~2-37,全華,1996。
    [26] 戴良誌,2006,“沿面管路佈置自動避碰方法”,碩士論文,國立高雄海洋科技大學,輪機工程所。

    下載圖示 校內:2014-08-24公開
    校外:2014-08-24公開
    QR CODE