| 研究生: |
蔡鎧蔚 Tsai, Kai-Wei |
|---|---|
| 論文名稱: |
溴化四辛基銨與溴化銨作為界面修飾層於高分子發光二極體之研究 Tetraoctylammonium bromide and ammonium bromide as the interfacial layers in polymer light-emitting diodes |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 高分子發光二極體 、溴化四辛基銨 、溴化銨 、電子注入層 、電洞注入層 、界面偶極 |
| 外文關鍵詞: | PLED, tetraoctylammonium bromide, ammonium bromide, electron injection layer, hole injection layer, interfacial dipole |
| 相關次數: | 點閱:96 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分別將溴化四辛基銨以及溴化銨應用於高分子發光二極體的電子電洞注入層,並且利用界面偶極來降低載子注入能障以提升元件效率。
第一部分是將四級胺鹽應用於G-PF,SY-PPV,P3HT等元件之電子注入層,四級胺鹽在不同的共軛高分子上的修飾作用與扮演的角色也不同。TOAB在SY-PPV上可以形成具有良好的垂直水平方向的層狀結構,進而降低電子注入能障,提升元件效率。而在P3HT中,同樣具有修飾陰極的作用,但是由於形成過大的晶粒使得TOAB在P3HT中,主要是利用電洞阻擋能力來幫助提升元件效率。
第二部分是將溴化銨應用於電洞注入層,將其組裝成元件並探討其元件的展現。溴化銨可以有效地藉由提升ITO的功函數來提升元件效率,同時具有修飾ITO的表面來降低漏電流。從XPS結果發現,溴化銨的氫可能利用與ITO上的氧形成氫鍵,架構出界面偶極以降低電洞注入能障。
In this dissertation, the tetraoctylammonium bromide (TOAB) and the ammonium bromide (NH4Br) were applied on electron injection layer and hole injection layer of polymer light-emitting diodes. The decease of carrier injection barrier by interfacial dipole will enhance the device performance.
In the first part, we will use TOAB as electron injection layer on the three different conjugated polymers, G-PF, SY-PPV and P3HT, and the TOAB play different roles in these three conjugated polymers. The good stacking along the plane normal of the TOAB lamellar structure on the SY-PPV can effectively lower the electron injection barrier. The electron injection barrier also decreased by the TOAB/Al cathode of P3HT devices , but the grain of TOAB is thick to block electron transfer. The device performance come from the hole block near the interface between P3HT and TOAB.
In the second part, NH4Br will be used as hole injection layer on PLED. The increase of ITO work function by ammonium bromide can effectively enhance device performance. And the roughness of ITO can be modified by NH4Br to decrease the leakage current of devices. From the results of XPS, the hydrogen bonding may be formed by the hydrogen of NH4Br and oxygen of ITO. The formation of hydrogen bonding help the NH4Br form ordering structure, and the ordering structure can form the dipole formation to decrease hole injection barrier.
1. J. Kido, M. Kimura and K. Nagai, Science, 267, 1332 (1995).
2. S. R. Forrest, Org. Electron., 4, 45 (2003).
3. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Nature, 357, 477 (1992).
4. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 347, 539 (1990).
5. Wolfgang Bruetting, Stefan Berleb and A. G. Mueckl, Org. Electron., 2, 1 (2001).
6. I. D. Parker, J. Appl. Phys., 75, 1656 (1994).
7. I. D. Parker, Y. Cao and C. Y. Yang, J. Appl. Phys., 85, 2441 (1999).
8. T.-W. Lee, M.-G. Kim, S. H. Park, S. Y. Kim, O. Kwon, T. Noh, J.-J. Park, T.-L. Choi, J. H. Park and B. D. Chin, Adv. Funct. Mater., 19, 1863 (2009).
9. G. E. Jabbour, Y. Kawabe, S. E. Shaheen, J. F. Wang, M. M. Morrell, B. Kippelen and N. Peyghambarian, Appl. Phys. Lett., 71, 1762 (1997).
10. L. S. Hung, C. W. Tang and a. M. G. Mason, Appl. Phys. Lett., 70, 152 (1997).
11. J. Yoon, J.-J. Kim, T.-W. Lee and O.-O. Park, Appl. Phys. Lett., 76, 2152 (2000).
12. C. W. Chen, Y. J. Lu, C. C. Wu, E. H. E. Wu, C. W. Chu and Y. Yang, Appl. Phys. Lett., 87, 241121 (2005).
13. T.-F. Guo, F.-S. Yang, Z.-J. Tsai, T.-C. Wen, S.-N. Hsieh, Y.-S. Fu and C.-T. Chung, Appl. Phys. Lett., 88, 113501 (2006).
14. T.-H. Lee, J.-C.-A. Huang, G. L. v. Pakhomov, T.-F. Guo, T.-C. Wen, Y.-S. Huang, C.-C. Tsou, C.-T. Chung, Y.-C. Lin and Y.-J. Hsu, Adv. Funct. Mater., 18, 3036 (2008).
15. A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay and A. Salleo, Chem. Rev., 110, 3 (2010).
16. Q. Xu, J. Ouyang, Y. Yang, T. Ito and J. Kido, Appl. Phys. Lett., 83, 4695 (2003).
17. Y. Cao, G. Yu and A. J. Heeger, Adv. Mater., 10, 917 (1998).
18. Y.-H. Niu, H. Ma, Q. Xu and A. K.-Y. Jen, Appl. Phys. Lett., 86, 083504 (2005).
19. H. Wu, F. Huang, Y. Mo, W. Yang, D. Wang, J. Peng and Y. Cao, Adv. Mater., 16, 1826 (2004).
20. H. B. Wu, F. Huang, J. B. Peng and Y. Cao, Org. Electron., 6, 118 (2005).
21. I. G. Hill, A. J. Makinen and Z. H. Kafafi, J. Appl. Phys., 88, 889 (2000).
22. F. Huang, Y. H. Niu, Y. Zhang, J. W. Ka, M. S. Liu and A. K. Y. Jen, Adv. Mater., 19, 2010 (2007).
23. Y. Zhang, F. Huang, Y. Chi and A. K. Y. Jen, Adv. Mater., 20, 1565 (2008).
24. F. Huang, P.-I. Shih, C.-F. Shu, Y. Chi and A. K. Y. Jen, Adv. Mater., 21, 361 (2009).
25. F. Huang, Y. Zhang, M. S. Liu and A. K. Y. Jen, Adv. Funct. Mater., 19, 2457 (2009).
26. Y. Jin, G. C. Bazan, A. J. Heeger, J. Y. Kim and K. Lee, Appl. Phys. Lett., 93, 123304 (2008).
27. C. V. Hoven, A. Garcia, G. C. Bazan and T.-Q. Nguyen, Adv. Mater., 20, 3793 (2008).
28. J. S. Kim, M. Granstro¨m, R. H. Friend, N. Johansson, R. D. W. R. Salaneck, W. J. Feast and F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
29. S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung and C. F. Kwong, Appl. Phys. A: Mater. Sci. Process., 68, 447 (1999).
30. S. Karg, J.C. Scott, J.R. Salem and M. Angelopoulos, Synth. Met., 80, 111 (1996).
31. J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem and J. A. Goitia, J. Appl. Phys., 79, 2745 (1996).
32. Y. Cao, G. Y. U, C. Zhang, R. Menon and A. J. Heeger, Synth. Met., 87, 171 (1997).
33. T. van Woudenbergh, J. Wildeman, P. W. M. Blom, J. J. A. M. Bastiaansen and B. M. W. Langeveld-Vos, Adv. Funct. Mater., 14, 677 (2004).
34. Y. H. Niu, M. S. Liu, J. W. Ka, J. Bardeker, M. T. Zin, R. Schofield, Y. Chi and A. K. Y. Jen, Adv. Mater., 19, 300 (2007).
35. J. A. Bardecker, H. Ma, T. Kim, F. Huang, M. S. Liu, Y.-J. Cheng, G. Ting and A. K. Y. Jen, Adv. Funct. Mater., 18, 3964 (2008).
36. S. Khodabakhsh, D. Poplavskyy, S. Heutz, J. Nelson, D. D. C. Bradley, H. Murata and T. S. Jones, Adv. Funct. Mater., 14, 1205 (2004).
37. H. Yan, Q. Huang, J. Cui, J. G. C. Veinot, M. M. Kern and T. J. Marks, Adv. Mater., 15, 835 (2003).
38. Y.-J. Lin, C.-F. You, W.-Y. Chou and S.-T. Lin, Electrochem. Solid-State Lett., 9, G302 (2006).
39. Y.-J. Lin, H.-C. Chang and B.-Y. Liu, Appl. Phys. Lett., 90, 112112 (2007).
40. Y.-J. Lin, B.-Y. Liu and Y.-M. Chin, Thin Solid Films, 517, 5508 (2009).
41. Y.-J. Lin, Y.-L. Chu, Y. S. Huang and H.-C. Chang, Appl. Phys. Lett., 86, 202107 (2005).
42. Y.-J. Lin and C.-L. Tsai, J. Appl. Phys., 100, 113721 (2006).
43. C.-L. Tsai, Y.-J. Lin, P.-H. Wu, S.-Y. Chen, D.-S. Liu, J.-H. Hong, C.-J. Liu, Y.-T. Shih, J.-M. Cheng and H.-C. Chang, J. Appl. Phys., 101, 113713 (2007).
44. D. J. Abdallah, R. E. Bachman, J. Perlstein and R. G. Weiss, J. Phys. Chem. B, 103, 9269 (1999).
45. C. W. Garland and C. F. Yarnell, J. Chem. Phys., 44, 1112 (1966).
46. S.-N. Hsieh, S.-W. Hsiao, T.-Y. Chen, C.-Y. Li, C.-H. Lee, T.-F. Guo, Y.-J. Hsu, T.-L. Lin, Y. Wei and T.-C. Wen, J. Mater. Chem., 21, 8715 (2011).
47. I. G. Hill, A. Rajagopal, A. Kahn and Y. Hu, Appl. Phys. Lett., 73, 662 (1998).
48. M. P. d. Jong, L. J. v. IJzendoorn and M. J. A. d. Voigt, Appl. Phys. Lett., 77, 2255 (2000).
49. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung and C. C. Chang, Appl. Phys. Lett., 80, 2788 (2002).
50. S. J. Jo, C. S. Kim, J. B. Kim, S. Y. Ryu, J. H. Noh, H. K. Baik, Y. S. Kim and S.-J. Lee, J. Appl. Phys., 103, 114502 (2008).