簡易檢索 / 詳目顯示

研究生: 黃國瑋
Huang, Kuo-Wei
論文名稱: 刮刀塗佈法製作鈣鈦礦薄膜其成核長晶機制與其光電特性研究
The Study of Nucleation and Growth Mechanism of Blade-coating Perovskite Film and its Photoelectric Properties.
指導教授: 陳昭宇
Chen, Chao-Yu
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 318
中文關鍵詞: 鈣鈦礦刮刀塗佈法太陽電池X光感測器
外文關鍵詞: TiO2, electron transport layer, low-temperature process, perovskite, solar cell, doctor blades, co-solvent, ambient processes, liquid-phase SEM, solvent coordination, crown ether, X-ray detector
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Dynamic Control of Low-temperature Processed Uniform Ultrathin TiO2 Blocking Layer for Efficient Perovskite Solar Cell iii The effects of solvent on doctor-bladed perovskite light absorber under ambient process condition for multiple-cation mixed halide perovskites. xxii Role of Crown Ether in Perovskite Precursor for Doctor-bladed Perovskite Solar Cells: Investigated by Liquid-phase Scanning Electron Microscopy. xlii Fast fabrication of μm-thick perovskite film by one-step doctor-blade coating method for the direct X-ray detectors Microscopy. lxiv 致謝 lxxxiii 目錄 lxxxiv 圖目錄 lxxxviii 表目錄 xcviii 第一章 緒論 1 1.1 前言 1 1.2 太陽電池簡介 3 1.2.1 無機太陽電池 4 1.2.2 有機太陽電池 5 1.2.3 鈣鈦礦太陽電池 6 1.3 X光感測器簡介 9 1.3.1數位X光感測器技術發展簡介 10 1.3.2 直接式X光感測器簡介 13 1.3.3 鈣鈦礦X光感測器簡介 17 1.4 研究動機 19 1.5 論文大綱 21 第二章 文獻回顧與理論背景 22 2.1 鈣鈦礦太陽電池發展歷史 22 2.2 鈣鈦礦薄膜製備方法 31 2.2.1 旋轉塗佈製程法 31 2.2.2 可大面積化的製程方法 34 2.4 鈣鈦礦直接式X光感測器發展歷史 52 2.5 化學浴浸泡法製作TiO2阻擋層技術 59 2.6 液相SEM分析技術 60 2.7 本章結論 62 第三章 實驗步驟與量測方法 64 3.1 元件製備過程 64 3.1.1 材料與元件結構 64 3.1.2 製備過程 65 3.2 材料分析 74 3.2.1 掃瞄式電子顯微鏡(Scanning electron microscope, SEM) 74 3.2.2 X-ray 繞射儀(X-Ray Diffraction, XRD) 74 3.2.3 紫外-可見光吸收光譜儀(UV-VIS spectroscopy) 75 3.3.4 傅立葉轉換紅外光譜 (Fourier-transform infrared spectroscopy ,FTIR) 75 3.3.5 光致發光光譜(Photoluminescence spectra, PL) 76 3.3.6 熱重分析法 (Thermogravimetric analysis ,TGA) 77 3.3 元件光電特性量測 77 3.2.1 電流密度-電壓量測((I-V measurement) 77 3.2.2 光電轉化效率量測(Incident photo-to current conversion efficiency (IPCE) measurement) 78 3.2.3 SCLC法缺陷密度量測 79 3.2.4 X光響應量測法 79 3.4 結論 81 第四章 化學浴溶液浸泡法製作均勻二氧化鈦阻擋層的成長動力學與製作鈣鈦礦太陽電池光電特性研究 82 4.1 前言 82 4.2 化學浴浸泡法製備二氧化鈦阻擋層成長動力學研究 82 4.3 電化學分析法分析阻擋層品質機制探討 87 4.4 元件光伏特性探討 92 4.4.1 鈣鈦礦退火溫度對光伏元件性能影響 92 4.4.2 二氧化鈦阻擋層對光伏元件性能影響 97 4.5 本章結論 105 第五章 溶劑系統對刮刀塗佈製作多元陽離子鈣鈦礦薄膜的影響與其光伏元件特性研究 107 5.1 前言 107 5.2 主溶劑系統對刮刀塗佈製作鈣鈦礦薄膜機制探討 107 5.3 輔助溶劑系統對刮刀塗佈製作鈣鈦礦薄膜機制探討 113 5.4 刮刀塗佈製作鈣鈦礦時溴碘分佈影響機制探討 118 5.5 光伏元件光電特性探討 123 5.5.1 主溶劑系統製作鈣鈦礦薄膜對太陽電池影響機制探討 123 5.5.2 輔助溶劑系統製作鈣鈦礦薄膜對太陽電池影響機制探討 127 5.6 本章結論 136 第六章 冠醚化合物對刮刀塗佈製作多元陽離子鈣鈦礦薄膜的影響與其光伏特性研究 138 6.1 前言 138 6.2 冠醚化合物對鈣鈦礦前驅液中鈣鈦礦微胞影響研究 138 6.2.1 溶劑系統對鈣鈦礦前驅液穩定性影響研究 138 6.2.2 鈣鈦礦微胞表面自由能改變量對微胞影響分析 145 6.3 鈣鈦礦微胞對刮刀塗佈鈣鈦礦長晶成核影響研究 152 6.4 光伏元件光電特性探討 166 6.5 本章結論 182 第七章 刮刀塗佈製作微米等級鈣鈦礦厚膜與其X光感測特性研究 184 7.1 前言 184 7.2 溶劑系統與添加冠醚化合物對鈣鈦礦厚膜成長機制研究 184 7.3 直接式X光感測元件光電特性探討 191 7.4 本章結論 201 第八章 結論與未來工作 202 參考文獻 205

    [ 1] 經濟部 能源局110年度 專案計畫期末執行成果報告:綠能產業推動計畫。
    [ 2] Global Market Outlook For Solar Power, 2017.
    [ 3] W. G. Adams, R. Day, “The action of light on selenium”, Proc. R. Soc. London, 25, 113-117 (1876).
    [ 4] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys. 25, 676-677 (1954).
    [ 5] C. J. Brabec, “Organic photovoltaics: technology and market”, Sol. Energy Mater. Sol. Cells 83, 273-292 (2004).
    [ 6] N. Jain, M. K. Hudait, “Design for metamorphic dual junction InGaP GaAs solar cell on Si with efficiency greater than 29 % using finite element analysis”, 28th IEEE Photovoltaic Spec. Conf. 2056-2060 (2012).
    [ 7] D. Kearns, M. Calvin, “Photovoltaic effect and photoconductivity in organic laminated systems”, J. Chem. Phys. 29, 950-951(1958).
    [ 8] C. W. Tang, “Two layer organic photovoltaic cell”, Appl. Phys. Lett. 48, 183 (1986).
    [ 9] B. O’regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353, 737-740 (1991).
    [ 10] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater. 15, 1617-1622 (2005).
    [ 11] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processible polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater. 4, 864-868 (2005).
    [ 12] S. E. Shaheen, C. J. Brebec, N. S. Sariciftci, F. Padinger, T. Fromhert, J. C. Hummelen, “2.5 % efficient organic plastic solar cells”, Appl. Phys. Lett. 78, 841 (2001).
    [ 13] F. Padinger, R. S. Rittberger, N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Adv. Funct. Mater. 13, 85-88 (2003).
    [ 14] J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers”, Appl. Phys. Lett. 86, 244102 (2005).
    [ 15] Y. Shao, Y. Yang, “Efficient organic heterojunction photovoltaic cells basd on triplet materials”, Appl. Phys. Lett. 17, 1841(2005).
    [ 16] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency”, Nat. Commun. 4, 1446 (2013).
    [ 17] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc. 131, 6050-6051 (2009).
    [ 18] W. J. Yin, T. T. Shi, Y. F. Yan, “Unique properties of halide perovskites as possible origins of the superior solar cell performance”, Adv. Mater. 26, 4653-4658 (2014).
    [ 19] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites”, Adv. Mater. 26, 1584-1589 (2014).
    [ 20] J. -H. Im, C. -R. Lee, J. -W. Lee, Park, S. -W. N. -G. Park, “6.5% Efficient perovskite quantum-dot-sensitized solar cell”, Nanoscale 3, 4088-4093 (2011).
    [ 21] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber”, Science 342, 341-344 (2013).
    [ 22] G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. M Haisalkar, T. C. Sum, “Long-range balanced electron-and hole-transport lengths inorganic-inorganic CH3NH3PbI3”, Science 342, 344-347 (2013).
    [ 23] J. C. Frankel, “Newcomer juices up the race to harness sunlight”, Science 342, 1438-1439 (2013).
    [ 24] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREAL, accessed Dec. 8, 2022.)
    [ 25] S. Wei, X. Ren, L Chen, W. C. H. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells”, Appl. Phys. Lett. 106, 221104 (2015).
    [ 26] J. -Y. Jeng, Y. -F. Chiang, M. -H. Lee, S. -R. Peng, T. -F. Guo, P. Chen, T. -C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Adv. Mater. 25, 3727-3732 (2013).
    [ 27] 呂欣慧,數位X光平板感測器,工業材料雜誌2017, 370, 117-122.
    [ 28] Safa Kasap, M. Kabir, and John Rowlands 6, 288–292 (2006).
    [ 29] H. Huang and S. Abbaszadeh, IEEE Sensors Journal. 20(4), 1694–1704 (2020).
    [ 30] M. Schieber, A. Zuck, H. Gilboa, G. Zentai, IEEE Transactions on Nuclear Science
    53(4), 2385–2391 (2006).
    [ 31] Min-seok Yun, Sung-ho Cho, Rena Lee, Gi-won Jang, Yun-seok Kim, Woon-jae Shin, Sang-hee Nam, Japanese Journal of Applied Physics. 49(4R), 041801 (2010).
    [ 32] S. Bai, Y. Jin, F. Gao, “Organometal halide perovskites for photovoltaic applications”, 2nd edition, Wiley-VCH ISBN: 9781118998977 (2015).
    [ 33] H. -S. Kim, S. -H. Im, N. -G. Park, “Organolead halide perovskite: new horizons in solar cell research”, J. Phys. Chem. C 118, 5615-5625 (2014).
    [ 34] G. Kieslich, S. Sun, A. K. Cheethm, “Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog”, Chem. Sci. 5, 4712 -4715 (2014).
    [ 35] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, “Formability of ABX3 (X = F, Cl, Br, I) halide perovskites”, Acta Crystallogr. Sect. B: Struct. Sci. 64, 702-707 (2008).
    [ 36] R. J. Cava, B. Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp Jr, A. E. White, K. Short, W. F. Peck, T. Kometani, “Superconductivity near 30K without copper: the Ba0.6K0.4BiO3 perovskite”, Nature 332, 814-816 (1988).
    [ 37] R. J. Cava, B. Batlogg, J. J. Krajewski, L. W. Rupp, L. F. Schneemeyer, T. Siegrist, R. B. vanDover, P. Marsh, W. F. Peck Jr, P. K. Gallagher, S. H. Glarum, J. H. Marshall, R. C. Farrow, J. V. Waszczak, R. Hull, P. Trevor, “Superconductivity near 70 K in a new family of layered copper oxides”, Nature 336, 211-214 (1988).
    [ 38] A. G. Chynoweth, “Surface space-charge layers in barium titanate”, Phys. Rev. 102, 705 (1956).
    [ 39] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes “Light-emitting diodes based on conjugated polymers”, Nature 347, 539-541 (1990).
    [ 40] C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors”, Science 286, 945-947 (1999).
    [ 41] G. C. Papavassiliou, “Three-and low-dimensional inorganic semiconductors”, Prog. Solid St. Chem. 25, 125-270 (1997).
    [ 42] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3”, Solid State Commun. 127, 619-623 (2003).
    [ 43] A. Kojima, K. Teshima, T. Miyasaka, Y. Shirai, “Novel photoelectrochemical cell with mesoscopic electrods sensitized by lead-halide compounds (2)”, 210th ECS Meeting, Cancun, Mexico (2006).
    [ 44] A. Kojima, K. Teshima, Y. Shirai, T. Miyasake, “Novel photoelectrochemical cell with mesoscopic electrods sensitized by lead-halide compounds (5)”, 212th ECS Meeting, Washington, D.C., (2007).
    [ 45] H. -S. Kim, C. -R. Lee, J. -H. Im, K. -B. Lee, T. Moehl, A. Marchioro, S. -J. Moon, R. H. Baker, J. -H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Sci. Rep. 2, 591 (2012).
    [ 46] J. Burschka, N. Pellet, S. -J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature 499, 316-319 (2013).
    [ 47] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science 338, 643-647 (2012).
    [ 48] A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, M. Grätzel, “Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells”, Adv. Funct. Mater. 24, 3250-3258 (2014).
    [ 49] J. T. -W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells”, Nano Lett. 14, 724-730 (2014).
    [ 50] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells”, J. Am. Chem. Soc. 134, 17396-17399 (2012).
    [ 51] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, Y. M. Lam, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells”, Energy Environ. Sci. 7, 399-407 (2014).
    [ 52] O. Malinkiewicz, A. Yella, Y. -H. Lee, G. M. Espallargas, M. Grätzel, M. K. Nazeeruddin, H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers”, Nat. Photonics 8, 128-132 (2014).
    [ 53] J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. -B. Song, C. -C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility”, ACS Nano 8, 1674-1680 (2014).
    [ 54] J. -H. Im, H. -S. Kim, N. -G. Park, “Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3”, APL Mater. 2, 081510 (2014).
    [ 55] B. Conings, L. Baeten, C. D. Dobbelaere, J. D'Haen, J. Manca, H. G. Boyen, “Perovskite-based hybrid solar cells exceeding 10 % efficiency with high reproducibility using a thin film sandwich approach”, Adv. Mater. 26, 2041-2046 (2013).
    [ 56] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, “Morphological control for high performance solution processed planar heterojunction perovskite solar cells”, Adv. Funct. Mater. 24, 151-157 (2014).
    [ 57] G. E. Eperon, V. M. Burlakov, A. Goriely, H. J. Snaith. “Neutral color semitransparent microstructured perovskite solar cells”, ACS Nano 8, 591-598 (2014).
    [ 58] Y. Zhao K. Zhu, “CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells”, J. Phys. Chem. C 118, 9412-9418 (2014).
    [ 59] Y. Chen, Y. Zhao, Z. Liang, “Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl”, Chem. Mater. 27, 1448-1451 (2015).
    [ 60] P. -W. Liang, C. -Y. Liao, C. -C. Chueh, F. Zuo, S. T. Williams, X. -K. Xin, J. Lin, A. K. -Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells”, Adv. Mater. 26, 3748-3754 (2014).
    [ 61] C. -C. Chueh, C. -Y. Liao, F. Zuo, S. T. Williams, P. -W. Liang, A. K. -Y. Jen, “The roles of alkyl halide additives in enhancing perovskite solar cell performance”, J. Mater. Chem. A 3, 9058-9062 (2015).
    [ 62] C. -Y. Chang, C. -Y. Chu, Y. -C. Huang, C. -W. Huang, S. -Y. Chang, C. -A. Chen, C. -Y. Chao, W. -F. Su, “Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy”, ACS Appl. Mater. Interfaces 7, 4955-4961 (2015).
    [ 63] H. -B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J. -Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells”, Nanoscale 6, 6679-6683 (2014).
    [ 64] W. Nie, H. Tsai, R. Asadpour, J. -C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. -L. Wang, A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science 347, 522-525 (2015).
    [ 65] N. -J. Jeon, J. -H. Noh, Y. -C. Kim, W. -S. Yang, S. Ryu, S. -I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells”, Nat. Mater. 13, 897-903 (2014).
    [ 66] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. G. Weale, U. Bach, Y.-B. Cheng, L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells”, Angew. Chem. Int. Ed. 126, 10056-10061 (2014).
    [ 67] F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, Y. Zhou, A. G. Weale, J. Etheridge, C. R. McNeill, R. A. Caruso, U. Bach, L. Spiccia, Y. -B. Cheng, “Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells”, Nano Energy 10, 10-18 (2014).
    [ 68] J. You, Y. M. Yang, Z. Hong, T. -B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W. -H. Chang, G. Li, Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells”, Appl. Phys. Lett. 105, 183902 (2014).
    [ 69] H. Zhou, Q. Chen, G. Li, S. Luo, T. -B. Song, H. -S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science 345, 542-546 (2014).
    [ 70] Y. Rong, Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A. M. Guloy, Y. Yao, “Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells”, Nanoscale 7, 10595-10599 (2015).
    [ 71] H. Chen, Z. Wei, H. He, X. Zheng, K. S. Wong, S. Yang, “Solvent Engineering Boosts the Efficiency of Paintable Carbon-Based Perovskite Solar Cells to Beyond 14% “, Adv. Energy Mater. 6, 1502087 (2016).
    [ 72] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”, Energy Environ. Sci. 7, 2619-2623 (2014).
    [ 73] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. -S. Duan, H. -H. Wang, Y. Liu, G. Li, Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process”, J. Am. Chem. Soc. 136, 622-625 (2014).
    [ 74] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, G. Cui, “Methylamine-Gas-Induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells”, Angew. Chem. Int. Ed. 54, 9705-9709 (2015).
    [ 75] S. Pang, Y. Zhou, Z. Wang, M. Yang, A. R. Krause, Z. Zhou, K. Zhu, N. P. Padture, G. Cui, “Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid-gas interaction between HPbI3-CH3NH2 precursor pair”, J. Am. Chem. Soc. 138, 750-753 (2016).
    [ 76] M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature 501, 395-398 (2013).
    [ 77] B. -S. Kim, T. -M. Kim, M. -S. Choi, H. -S. Shim, J. -J. Kim, “Fully vacuum-processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers”, Org. Electron. 17, 102-106 (2015).
    [ 78] L. E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, K. Leo, “Hole-transport material variation in fully vacuum deposited perovskite solar cells”, APL Mater. 2, 081503 (2014).
    [ 79] A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley, D. G. Lidzey, “Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition”, Energy Environ. Sci. 7, 2944-2950 (2014).
    [ 80] D. K. Mohamad, J. Griffin, C. Bracher, A. T. Barrows, D. G. Lidzey, “Spray-Cast Multilayer Organometal Perovskite Solar Cells Fabricated in Air”, Adv. Energy Mater. 6, 1600994 (2016).
    [ 81] S. Das, B. Yang, G. Gu, P. C. Joshi, I. N. Ivanov, C. M. Rouleau, T. Aytug, D. B. Geohegan, K. Xiao, “High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing”, ACS Photonics 2, 680-668 (2015).
    [ 82] K. M. Boopathi, M. Ramesh, P. Perumal, Y. -C. Huang, C. -S. Tsao, Y. -F. Chen, C. -H. Lee, C. -W. Chu, “Preparation of metal halide perovskite solar cells through a liquid droplet assisted method”, J. Mater. Chem. A 3, 9257-9263 (2015).
    [ 83] K. M. Boopathi, M. Ramesh, P. Perumal, Y. -C. Huang, C. -S. Tsao, Y. -F. Chen, C. -H. Lee, C. -W. Chu, “Preparation of metal halide perovskite solar cells through a liquid droplet assisted method”, J. Mater. Chem. A 3, 9257-9263 (2015).
    [ 84] Y. Deng, X. Zheng, Y. Bai, Q. Wang, J.- J. Zhao, J.-S. Huang, ”Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules”, Nature Energy 3, 560-566 (2018).
    [ 85] Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J.-S. Huang, “Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers”, Energy Environ. Sci. 8, 1544 (2015).
    [ 86] H. Tan, A. Jain, O. Voznyy, X. Lan, F. Pelayo García de Arquer, J. Z. Fan, Rafael Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E. H. Sargent,” Efficient and stable solution-processed planar perovskite solar cells via contact passivation”, Science 355, 722-726 (2017).
    [ 87] R. Wang, M. Mujahid, Y. Duan, Z.-K. Wang, J.-J. Xue, Y. Yang, “A Review of Perovskites Solar Cell Stability”, Adv. Funct. Mater. 29, 1808843 (2018).
    [ 88] L. Shi1, M. P. Bucknall, T. L. Young, M. Zhang, L. Hu, J. Bing, D. S. Lee, J. Kim, T. Wu, N. Takamure, D. R. McKenzie, S. Huang, M. A. Green, A. W. Y. Ho-Baillie,” Next-generation solar cells pass strict international tests.” Science 21, 2412 (2020).
    [ 89] N. Yaghoobi, F. Giordano, M. Zendehdel, L. Cinà, A. L. Palma, P. G. Medaglia, S. M. Zakeeruddin, M. Grätzel, A. D. Carlo, “Solution-based heteroepitaxial growth of stable mixed cation/anion hybrid perovskite thin film under ambient condition via a scalable crystal engineering approach.”, Nano Energy 69, 104441 (2020).
    [ 90] F. Zhang, K. Zhu,” Monoammonium Porphyrin for Blade-Coating Stable Large-Area Perovskite Solar Cells with >18% Efficiency”, Adv. Energy Mater. 10, 13, 1902579 (2019).
    [ 91] B. Li, D. Binks, G. Cao, J. J. Tian, “Controlled crystal orientation of two-dimensional Ruddlesden—Popper halide perovskite films for solar cells”, Small 15, 47, 1903613 (2019).
    [ 92] J. Zhang, T. Bu, J. Li, H. Li, Y. Mo, Z. Wu, Y. Liu, X.-L. Zhang, Y.-B. Cheng, F. Huang, J. Mater. Chem. A 8, 8447 (2020).
    [ 93] W.-Q. Wu, P. N. Rudd, Q. Wang, Z.-B. Yang, J. Huang, “Blading Phase-Pure Formamidinium-Alloyed Perovskites for High-Efficiency Solar Cells with Low Photovoltage Deficit and Improved Stability”, Adv. Mater. 28, 2000995 (2020).
    [ 94] F. Lédée, A. Ciavatti, M. Verdi, L. Basiricò, B. Fraboni, “Ultra-Stable and Robust Response to X-Rays in 2D Layered Perovskite Micro-Crystalline Films Directly Deposited on Flexible Substrate”, Adv.OpticalMater. 10, 2101145 (2022).
    [ 95] E. Shi, Y. Gao, B. P. Finkenauer, Akriti, A. H. Coffeya, L. Dou, “Two-dimensional halide perovskite nanomaterials and heterostructures”, Chem. Soc. Rev. 47, 6046-6072 (2018).
    [ 96] R. Zhuang, X. Wang, W. Ma, Y. Wu, X. Chen, L. Tang, H. Zhu, J. Liu, L. Wu, W. Zhou, X. Liu, Y. (Michael) Yang, “Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response”, Nature Photonics 13, 602-608 (2019).
    [ 97] W. Li, D. Xin, S. Tie, J. Ren, S. Dong, L. Lei, X. Zheng, Y. Zhao, W.-H. Zhang, “Zero-Dimensional Lead-Free FA3Bi2I9 Single Crystals for High-Performance X-ray Detection”, J. Phys. Chem. Lett. 12, 7, 1778–1785 (2021).
    [ 98] Y. Zhang, Y. Liu, Z. Xu, H. Ye, Z. Yang, J. You, M. Liu, Y. He, M. G. Kanatzi, S. (Frank) Liu, “Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection”, Nature Communications 11, 2304 (2020).
    [ 99] Wei Qian, Xi. Xu, J. Wang, Y. Xu, J. Chen, Y. Ge, J. Chen, C. Xiao, S. Yang, “An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors”, Matter 4, 942-954 (2021).
    [ 100] W. Li, Y. Xu, J. Peng, R. Li, J. Song, H. Huang, L. Cui, Q. Lin, “Evaporated Perovskite Thick Junctions for X-Ray Detection”, ACS Appl. Mater. Interfaces 13, 2, 2971–2978 (2021).
    [ 101] Y. C. Kim, K. H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo, Y. S. Choi, I. T. Han, S. Y. Lee, N.-G. Park,” Printable organometallic perovskite enables large-area, low-dose X-ray imaging“, Nature 550, 87–91 (2017).
    [ 102] S. Dong, D. Xin, M. Zhang, S. Tie, B. Cai, Q. Ma, X. Zheng, “Green solvent blade-coated MA3Bi2I9 for direct-conversion X-ray detectors”, J. Mater. Chem. C 10, 6236-6242 (2022).
    [ 103] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science 345 , 542-546 (2014).
    [ 104] Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S. Pandey, T. Ma, S. Hayase, “All-Solid Perovskite Solar Cells with HOCO-R-NH3+I− Anchor-Group Inserted between Porous Titania and Perovskite.” J. Phys. Chem. C, 118, 16651-16659 (2014).
    [ 105] Z. Liu, Q. Chen, Z. Hong, H. Zhou, X. Xu, D. N. Marco, P. Sun, Z. Zhao, Y.-B. Cheng, Y. Yang, “Low-Temperature TiOx Compact Layer for Planar Heterojunction Perovskite Solar Cells.”, ACS Appl. Mater. Interfaces 8, 11076-11083 (2016).
    [ 106] K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. Friend, A. Jen, H.-J. Snaith,”Heterojunction Modification for Highly Efficient Organic-inorganic Perovskite Solar Cells.”, ACS Nano 8, 12701-12709 (2014).
    [ 107] B.C. O'Regan, J.R. Durrant, P. M. Sommeling, N.J. Bakker, ”Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells.” J. Phys. Chem. C 111, 14001-14010 (2007).
    [ 108] L. Vesce, R. Riccitelli, G. Soscia, T.M. Brown, A. Di Carlo, A. Reale, ”Optimization of nanostructured titania photoanodes for dye-sensitized solar cells: Study and experimentation of TiCl4 treatment” J. Non-Crystal. Sol. 356, 1958-1961 (2010).
    [ 109] A. Yella, L.-P. Heiniger, P. Gao, M.K. Nazeeruddin, M. Grätzel,”Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency” Nano Lett. 14, 2591-2596 (2014).
    [ 110] O. Almora, I. Zarazua, E. M. Marza, I. M. Sero, J. Bisquert, G. G. Belmonte, ”Hyster-esis and Electrode Polarization in Lead Haerovskilide Pte Solar Cells.”J. Phys. Chem. Lett. 6, 1645-1652 (2015).
    [ 111] L. Cojocaru, S. Uchida, Y. Sanehira, J. Nakazaki, T. Kubo, H. Segawa, “Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells.” Chem. Lett. 44, 674-676 (2015).
    [ 112]J. Ma, J. Chang, Z. Lin, X. Guo, L. Zhou, Z. Liu, H. Xi, D. Chen, C. Zhang, Y. Hao, “Elucidating the Roles of TiCl4 and PCBM Fullerene Treatment on TiO2 Electron Transporting Layer for Highly Efficient Planar Perovskite Solar Cells,” J. Phys. Chem. C 122, 1044-1053 (2018).
    [ 113] H. Wu, H. Friedrich, J. P. Patterson, N. A.J.M. Sommerdijk, N. de Jonge, “Liquid-Phase Electron Microscopy for Soft Matter Science and Biology.” Adv. Mater. 32, 2001582 (2020).
    [ 114] Q.-F. Dong, Y.-J. Fang, Y.-C. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang,” Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers”, Science 347, 967-970 (2015).
    [ 115] L. Kavan, N. Té treault, T. Moehl, M. Grätzel, “Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells.” J. Phys. Chem. C 118, 16408-16418 (2014).
    [ 116] T.-S. Su, T.-Y. Hsieh, C.-Y. Hong, T.-C. Wei “Electrodeposited ultrathin TiO2 blocking layers for efficient perovskite solar cells.” Scientific Reports 5, 16098 (2015).
    [ 117] J. C. Hamill Jr., J. Schwartz, Y.-L. Loo,” Influence of Solvent Coordination on Hybrid Organic–Inorganic Perovskite Formation” ACS Energy Lett. 3, 92−97 (2018).
    [ 118] J. G. Tait, T. Merckx, W. Li, C. Wong, R. Gehlhaar, D. Cheyns, M. Turbiez, P. Heremans,” Determination of Solvent Systems for Blade Coating Thin Film Photovoltaics.” Adv. Funct. Mater. 25, 3393 (2015).
    [ 119] G. Zheng, C. Zhu, J. Ma, X. Zhang, G. Tang, R. Li, Y. Chen, L. Li, J.-S. Hu, J.-W. Hong, Q. Chen, X. Gao, H. Zhou, “Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade.” Nat. Commun. 9, 2793 (2018).
    [ 120] W. Zhang, Y. Jiang, Y. Ding, M. Zheng, S. Wu, X. Lu, X. Gao, Q. Wang, G. Zhou, J. Liu, M. J. Naughton, K. Kempa, J.-W. Gao,” Solvent-induced textured structure and improved crystallinity for high performance perovskite solar cells.” Opt. Mater. Express 7 (7), 2150-2160 (2017).
    [ 121] J. Gmehling, C. Möllmann, Ind. Eng. Chem.” Synthesis of distillation processes using thermodynamic models and the Dortmund data bank.” 37 (8), 3112-3123 (1998).
    [ 122] S. Arifin, I-L. Chien,” Multiple steady states in homogeneous azeotropic distillation.” Ind. Eng. Chem. Res. 47, 790-803 (2008).
    [ 123] Y.-K. Ren, S.-D. Liu, B. Duan, Y.-F. Xu, Z.-Q. Li, Y. Huang, L.-H. Hu, J. Zhu, S.-Y. Dai,” The Effects of Solvent on Doctor‐Bladed Perovskite Light Absorber under Ambient Process Condition for Multiple‐Cation Mixed Halide Perovskites.” J. Alloy. Compd. 705, 205-210 (2017).
    [ 124] S.-S. Liu, W.-C. Huang, P. Liao, N. Pootrakulchote, H. Li, J.-F. Lu, J.-P. Li, F.-H. Huang, X.-X. Shai, X.-J. Zhao,” 17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite.” J. Mater. Chem. A 5, 22952 (2017).
    [ 125] Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., Witten, T. A, “Evolution of a Water Pendant Droplet: Effect of Temperature and Relative Humidity.” Nature 389, 82-829 (1997).
    [ 126] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr,” Wide-angle polarization-free plasmon-enhanced light absorption in perovskite films using silver nanowires.” Science 347, 519-522 (2015).
    [ 127] Q.-F. Dong, Y.-J. Fang, Y.-C. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang,”Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers.” Science 347, 967-970 (2015).
    [ 128] Y. Lin, B. Chen, F. Zhao, X. Zheng, Y. Deng, Y. Shao, Y. Fang, Y. Bai, C. Wang, J. S. Huang,” Highly efficient and stable perovskite solar cells enabled by low-dimensional perovskitoids.” Adv. Mater. 29, 1700607 (2017).
    [ 129] H.-S. Kim, N.-G. Park,” Parameters Affecting I–V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer.” J. Phys. Chem. Lett. 5, 2927-2934 (2014).
    [ 130] S. You, H. Wang, S. Bi, J. Zhou, L. Qin, X. Qiu, Z. Zhao, Y. Xu, Y. Zhang, X. Shi, H. Zhou, Z. Tang,” The roles of fused-ring organic semiconductor treatment on SnO2 in enhancing perovskite solar cell performance.” Adv. Mater. 30, 1706924 (2018).
    [ 131] Sugimoto, T., “Preparation of monodispersed colloidal particles.” Advances in Colloid and Interface Science, 28, 65-108 (1987).
    [ 132] Shin, G.S., Y. Zhang, N.-G. Park, “Stability of Precursor Solution for Perovskite Solar Cell: Mixture (FAI + PbI2) versus Synthetic FAPbI3 Crystal.” ACS Applied Materials & Interfaces, 12, 15167-15174 (2020).
    [ 133] Butt, H.-J., Graf, K., Kappl, M., “Surfactants, Micelles, Emulsions, and Foams.” Physics and Chemistry of Interfaces. 19, 246-279 (2003).
    [ 134] He, M., Li B., Cui X., Jiang B., He Y., Chen Y., O’Neil D., Szymanski P., Ei-Sayed M. A., Huang J., Lin Z., “Meniscus-assisted solution printing of large- grained perovskite films for high-efficiency solar cells.” Nat. Commun. 8, 16045 (2017).
    [ 135] Deng, Y., Zheng X., Bai Y., Wang Q., Zhao J., Huang J. “Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules.” Nature Energy 3, 560-566 (2018).
    [ 136] Kim, M.K., Lee H. S., Pae S. R., Kim D.-J., Lee J.-Y., Gereige I., Park S., Shin B. “Effects of temperature and coating speed on the morphology of solution-sheared halide perovskite thin-films.” J. Mater. Chem. A 6, 24911-24919 (2018).
    [ 137] Deng, Y., Peng E., Shao Y., Xiao Z., Dong Q., Huang J. “Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers.” Energy Environ. Sci. 8, 1544-1550 (2015).
    [ 138] Sánchez, S., Pfeifer L., Vlachopoulos N., Hagfeldt A. “Rapid hybrid perovskite film crystallization from solution.” Chem. Soc. Rev. 50, 7108-7131 (2021).
    [ 139] Abbas, M., Zeng L., Guo F., Rauf M., Yuan X.-C., Cai B. “A critical review on crystal growth techniques for scalable deposition of photovoltaic perovskite thin films.” Materials 13, 4851 (2020).
    [ 140] Wu, W., G.H. Nancollas, “A new understanding of the relationship between solubility and particle size.” J Solution Chem 27, 521-531 (1998).
    [ 141] Zhou, Y., Game O., Pang S., Padture M. “Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization.” J. Phys. Chem. Lett. 6, 4827-4839 (2015).
    [ 142] Zhang, F., K. Zhu, “Additive Engineering for Efficient and Stable Perovskite Solar Cells.” Adv. Energy Mater 10, 1902579 (2020).
    [ 143] Wu, W.-Q., Rudd P. N., Shao Y., Dai X., Wei H., Zhao J. J., Fang Y. J., Wang Q., Liu Y., Deng Y., Deng Y., Xiao X., Feng Y., Huang J. “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells.” Sci. Adv. 5, eaav8925 (2019).
    [ 144] Zhang H., Eickemeyer F. T., Zhou Z., Mladenović M., Jahanbakhshi F., Marten L., Hinderhofer A., Hope M. A., Ourellette O., Mishra A., Ahlawat P., Ren D., Su T.-S., Krishna A., Wang Z., Dong Z., Guo J., Zakeeruddin S. M., Schreiber F., Hagfeldt A., Emsley L., Rothlisberger U., Milić J. V., Grätzel M. “Multimodal host-guest complexation for efficient and stable perovskite photovoltaics.” Nat. Commun. 12, 3383 (2021).
    [ 145] Chen, R., Wu Y., Wang Y., Xu R., He R., Fan Y., Huang X. F., Yin J., Wu B., Li J., Zheng N. “Crown ether-assisted growth and scaling up of FACsPbI3 films for efficient and stable perovskite solar modules.” Adv. Funct. Mater. 31, 2008760 (2021).
    [ 146] Liu, Y., Sun J., Yang Z., Yang D., Ren X., Xu H., Yang Z., Liu S. “20-mm-Large single-crystalline formamidinium-perovskite wafer for mass production of integrated photodetectors.” Adv. Opt. Mater. 4, 1829-1837 (2016).
    [ 147] W. Qian, X. W. Xu, J. Wang, Y. Xu, J. W. Chen, Y. S. Ge, J. Chen, S. Xiao, S. Yang,” Excess Cesium Iodide Induces Spinodal Decomposition of CsPbI2Br Perovskite Films.” Matter 4, 942-954 (2021).
    [ 148]M. Jóźwiak, M. Tyczyńska, “The physicochemical properties and viscosity behavior of crown ether 18C6 in the mixture of water with N,N-dimethylformamide.” A. Bald J. Mol. Liq. 229, 520-529 (2017).
    [ 149] N. J. Jeon , J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu , S. Il Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.” Nat. Mater., 13(9), 897-903 (2014).
    [ 150] J.G. Tait, T. Merckx, W. Li, C. Wong, R. Gehlhaar, D. Cheyns, M. Turbiez, P. Heremans.”Determination of Solvent Systems for Blade Coating Thin Film Photovoltaics.” Adv. Funct. Mater. 2015, 25, 3393-3398.
    [ 151] H. Mescher, F. Schackmar, R. Huber, H. Eggers, M. Zuber, E. Hamann, G. Gramlich, J. Dangelmaier, Q. Zhang, A. G. Rösch, T. Zwick, G. H.-Sosa, U. W. Paetzold, U. Lemmer,” Origami-inspired perovskite X-ray detector by printing and folding.” npj Flexible Electronics 7, 9 (2023).
    [ 152] Kyung Hee University, KR Patent KR1839691B1, April 26, 2018.
    [ 153] L. Pan, S. Shrestha, N. Taylor, W. Nie, L. R. Cao., “Determination of X-ray detection limit and applications in perovskite X-ray detectors.” Nat. Commun. 2021, 12, 5258.

    無法下載圖示 校內:2028-11-27公開
    校外:2028-11-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE