| 研究生: |
張維哲 Chang, Wei-Che |
|---|---|
| 論文名稱: |
應用大數據分析海選新興產品之供應商並發展評選準則 Applying Big Data Analysis to Search for the Suppliers of New Products and to Develop Associated Selection Criteria |
| 指導教授: |
呂執中
Lyu, Jr-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 供應鏈管理 、層級分析法 、供應商評選 、大數據分析 |
| 外文關鍵詞: | Supply chain management, AHP, Supplier selection, Big data analysis |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著商業環境及客戶要求提高,產品的新世代或新產品開發上市時間明顯縮短,且因全球化趨勢及科技進步,使得企業若在原物料採購上受到地域限制而被迫選擇地理方便的廠商,將對企業競爭力有重大影響。市場上的競爭對於企業在選擇供應商時,一方面要考慮如何選出更有利的合作對象,一方面要確認新興產品原物料品質穩定。因此需要一個系統化的方法來解決上述問題,以提升企業對供應商搜尋及評選能力。
本研究主要將大數據分析(網頁探勘,web mining)應用於供應商搜尋,並採用層級分析法建立供應商評選機制。本研究使用R程式語言,針對關鍵字及CSS(Cascading Style Sheet)進行編碼以解析網頁,抓取資料時間為2019年6月至2020年4月。研究中首先載入搜尋網站版第一頁的網址,從載下來的頁面取出公司名稱、產品名稱與聯絡資料,接著重複此方式以抓取網頁網址,並將整理好的資料進行資料串接。共抓取網頁160萬則,透過新興產品屬性特徵(密度、熔融指數)、操作條件等比對最接近需求內容為42萬則,經網路爬重建立篩選表格比對品名、新興產品現用原料物性(稀稠度、軟化點),篩選後共1457則。本研究依據最終抓取資料1457則進行初步人工整理,將重複供應商與無關之內容皆剔除,總分析資料則數為324則。
完成上述供應商海選後,接著透過文獻探討找出篩選適合新興產品供應商的相關評估因素,再以層級分析法進行供應商評估因素的優勢度排序與分析,結果顯示優先順序依序為「服務品質」、「專業能力」、與「客訴處理」。透過此機制,可建立一套新興產品來源供應商良好評選機制。
研究結果顯示,利用web mining搜尋供應商對於個案公司在尋找新興產品原料供應有顯著的幫助,在個案企業過去一年所新增供應商不到10家,新興產品供應商更是只有一家,相較於過去供應商搜尋方式需要耗費許多人力物力,本研究其結果顯示搜尋到324有效資料中,對個案公司在主要市場有15家供應商在工廠附近,其中有6家是個案公司過去未曾發現之供應商且經評選後是可合作之供應商,幫助個案公司在發展新興產品有其他選擇及提升競爭力。
關鍵字:供應鏈管理、層級分析法、供應商評選、大數據分析
Time to market for new products have to be consistently shortened, for companies to increase competitiveness, which resulting a manufacturer to choose appropriate associated suppliers being more and more difficult. To choose an outsourced manufacturing partner, an enterprise must confirm that it has stable quality, scalable capacity and technical support capability. A systematic approach is necessary to solve the above-mentioned problems.
This work has combined big data analysis (web mining) and AHP (Analytic Hierarchy Process) to identify new suppliers when developing new products. In applying big data analysis for suppliers search, R programming language is used to encode keywords and CSS (Cascading Style Sheet) is applied to parse web pages, which extracts the company name, product name, and contact information from the downloaded page, and then repeats this ay to crawl the web and concatenate the sorted data. During the search, 1.6 million web pages were crawled, and 420,000 were sorted out through the characteristics such as density, melt index, operating conditions, A screening table to go one step further to compare product names and physical properties (thinness, softening point) of required raw materials for emerging products. After screening, 1457 items were extracted. The final data set was further filtered and 324 items are identified for the potential suppliers list.
Based on the literature review and opinions from experts, important characteristics of new suppliers were listed. AHP method was then applied to rank and analyze the ranking of the supplier evaluation factors. The results show that the priority is "Service Quality", "Professional Ability", and "Customer Complaint Management ". Supplier selection mechanism is then developed based on the preferred characteristics. After this mechanism has been applied to the potential suppliers list, 15 new suppliers have been selected which support the new product commercialization process being faster and more effective.
Keywords: Supply chain management, AHP, Supplier selection, Big data analysis
<中文>
林明杰等.(2009). 供應鏈關係品質對知識分享、動態能力與創新能力影響之實證研究.(電子商務學報;11卷2期),中央大學,桃園市。
柏謙基(2003).由供應鏈觀點探討台灣聚酯加工絲業之採購準則. 國立成功大學高階管理學程碩士論文。
廖健仲(2004).少量多樣製造業選擇供應商評估模式之研究-以某航太工業公司為例.義守大學工業工程與管理系碩士論文。
鄭智中(2005) 供應鏈之供應商評選方法研究。碩士論文,國立成功大學,台南市。
<英文>
Blome, C., Schoenherr, T. and Rexhausen, D. (2013), Antecedents and enablers of supply chain agility and its effect on performance: a dynamic capabilities perspective. International Journal of Production Research, Vol. 51 No. 4, 1295-1318.
Braunscheidel, M.J. and Suresh, N.C. (2009). The organizational antecedents of a firm’s supply chain agility for risk mitigation and response. Journal of Operations Management, Vol. 27 No. 2,pp. 119-140.
Brusset, X. (2016). Does supply chain visibility enhance agility?. International Journal of Production Economics, Vol. 171, pp. 46-59.
Byun, D.-H.( 2001). The AHP Approach for Selecting an Automobile Purchase Model. Inf.Manage., Vol. 38, No. 5, pp. 289–297, https://doi.org/10.1016/S0378-7206(00)00071-9
Caputo, A. C., Pelagagge, P. M., and Salini, P (2013). AHP-Based Methodology for Selecting Safety Devices of Industrial Machinery. Safety Sci, Vol. 53, ,pp. 202–218, https://doi.org/10.1016/j.ssci.2012.10.006
Chang, C., Wu, C., and Chen, C (2010). Determining the Performance of Collaborative Design Systems Based on AHP Sensitivity Analysis. J. Test., Vol. 38, No. 6 , pp. 759–766, https://doi.org/10.1520/JTE102608
Chang, K., Chain, K., Wen, T., and Yang, G. K (2016). A Novel General Approach for Solving a Supplier Selection Problem. J. Test., Vol. 44, No. 5,pp. 1911–1924, https://doi.org/10.1520/JTE20150038
Choi, T.M., Wallace, S.W. and Wang, Y. (2017), Big data analytics in operations management, Production and Operations Management. available at: https://doi.org/doi: 10.1111/poms.12838
Christopher, M. (2000). The agile supply chain: competing in volatile markets. Industrial Marketing Management. Vol. 29 No. 1, pp. 37-44.
Christopher, M. and Towill, D.R. (2002) Developing market specific supply chain strategies. The International Journal of Logistics Management Vol. 13 No. 1, pp. 1-14.
Davenport, T.H. (2006). Competing on analytics. Harvard Business Review, Vol. 84 No. 1, pp. 99-107.
Dickson, G.W. (1966). An Analysis of Vender Selection Systems and Decisions,
Journal of Purchasing, 2, 5-17.
Fisher, M.L. (1997).What is the right supply chain for your product?. Harvard Business Review. Vol. 75 No. 2, pp. 105-116.
Fosso Wamba, S. (2017). Big data analytics and business process innovation. Business Process Management Journal, Vol. 23 No. 3, pp. 470-476.
Galbraith, J.R. (2014), Organization design challenges resulting from big data. Journal of Organizational Design. Vol. 3 No. 1, pp. 2-13.
Gligor, D.M., Holcomb, M.C. and Feizabadi, J. (2016). An exploration of the strategic antecedents of firm supply chain agility: the role of a firm’s orientations. International Journal of Production Economics, Vol. 179, pp. 24-34.
Grossman, R.L. and Siegel, K.P. (2014). Organizational models for big data and analytics. Journal of Organizational Design Vol. 3 No. 1, pp. 20-25.
Hazen, B.T., Boone, C.A., Ezell, J.D. and Jones-Farmer, L.A. (2014). Data quality for data science predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications. International Journal of Production Economics. Vol. 154, pp. 72-80.
Ho, E. and Lin, C. Y. (2012). Evaluating the Entry Mode for Taiwan Insurance Companies by Using AHP Sensitivity. J. Test., Vol. 40, No. 3, pp. 476–484, https://doi.org/10.1520/JTE104520
Jabbour, C.J.C., de Sousa Jabbour, A.B.L., Sarkis, J. and Godinho Filho, M. (2017). Unlocking the circular economy through new business models based on large-scale data: an integrative framework and research agenda. Technological Forecasting and Social Change.
Khan, K.A. and Pillania, R.K. (2008). Strategic sourcing for supply chain agility and firms’ performance: a study of Indian manufacturing sector. Management Decision, Vol. 46 No. 10,pp. 1508-1530.
Kosala, R. and Blockeel, H. (2000). Web Mining Research: A Survey. ACM SIGKDD Explorations Newsletter, 2, 1-15.
Lee, H.L. (2002). Aligning supply chain strategies with product uncertainties, California Management Review, Vol. 44 No. 3, pp. 105-119.
Lee, H.L. (2004). The triple-a supply chain. Harvard Business Review, Vol. 82 No. 10, pp. 102-113
Liao, J.-J. (2004). A Study of the Supplier Evaluation & Selection Model in the Short-Run Manufacturing Sector: Exemplified by an Aerospace Industrial Company. Master’s thesis, Department of Engineering and Management, I-Shou University
Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C. and Byers, A.H. (2011). Big Data:The Next Frontier for Innovation Competition, and Productivity. McKinsey Global Institute. Washington, DC, available at: www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
Mishra, D., Gunasekaran, A., Papadopoulos, T. and Childe, S.J. (2016). Big data and supply chain management: a review and biblio metric analysis. Annals of Operations Research, pp. 1-24.
Mishra, D., Luo, Z., Jiang, S. and Dubey, R. (2017). A bibliographic study on big data: concepts, trend sand challenges. Business Process Management Journal, Vol. 23 No. 3, pp. 555-573.
Monczka, R.-M., Handfield, R.-B., Giunipero, L. C., and Patterson, J. L. (2014). Procurementand Supply Management, 4th ed. South-Western Publishing Co., Ltd., USA, 2014
Ren, S.J.-F., Fosso Wamba, S., Akter, S., Dubey, R. and Childe, S.J. (2017) Modelling quality dynamics business value and firm performance in a big data analytics environment. International Journal of Production Research, Vol. 55 No. 17, pp. 5011-5026.
Rezaei, J., Fahim, P. B. M., and Tavasszy, L. (2014). Supplier Selection in the Airline Retail Industry Using a Funnel Methodology: Conjunctive Screening Method and Fuzzy AHP. Expert Syst. Appl., Vol. 41, No. 18, pp. 8165–8179, https://doi.org/10.1016/j.eswa.2014.07.005
Roden, S., Nucciarelli, A., Li, F. and Graham, G. (2017). Big data and the transformation of operations models: a framework and a new research agenda. Production Planning & Control, Vol. 28Nos 11/12, pp. 929-944
Saaty, T. L. (1980) The Analytic Hierarchy Process: Planning. Priority Setting, Resource Allocation, McGraw-Hill, New York, NY,
Seyyed, A. D., Siew, I. N., Yuhanis, A. A., and Jo, A. H. (2016). An Investigation of Key Competitiveness Indicators and Drivers of Full-Service Airlines Using Delphi and AHP Techniques. J. Air Transp. Manag., Vol. 52, pp. 23–34, https://doi.org/10.1016/j.jairtraman.2015.12.004
Srinivasan, R. and Swink, M. (2017). An investigation of visibility and flexibility as complements to supply chain analytics: an organizational information processing theory perspective. Production and Operations Management, available at: https://doi.org/ doi: 10.1111/poms.12746
Swafford, P.M., Ghosh, S. and Murthy, N. (2006). The antecedents of supply chain agility of a firm: scale development and model testing, Journal of Operations Management, Vol. 24 No. 2, pp. 170-188.
Teltumbde, A. (2000) A framework of evaluating ERP projects. International Journal of Production Research, 28, 4507-4520.
Uzoka, F. M. E. (2005). AHP-based system for strategic evaluation of financial information. Information Knowledge Systems Management, 5(1), 49-61..
Waller, M.A. and Fawcett, S.E. (2013). Data science, predictive analytics, and big data: a revolution that will transform supply chain design and management. Journal of Business Logistics, Vol. 34No. 2, pp. 77-84.
Wang, G., Gunasekaran, A., Ngai, E.W. and Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: certain investigations for research and applications. International Journal of Production Economics, Vol. 176, pp. 98-110.
Watts, G. A. (2016). Work Value, Attitudes and Motivation of Women Employed inAdministrative Support Occupation. J. Career Dev., Vol. 19, No. 1, pp. 49–64,ttps://doi.org/10.1177/089484539201900105
Wei, C.C., Chien, C.F. and Wang, M.J. (2005). An AHP-based approach to ERP system selection. International Journal of Production Economics,96, 47-62.
<參考網頁>
經濟日報(2019)。【經濟成長減速 調查:2020年製造業產值成長1.28%】。取自: https://money.udn.com/money/story/5612/4119347 (2019年10月22日)
CTIMES。【網路行為預測智慧-Web Mining】。取自http://www.ctimes.com.tw/Art/Show2-tw.asp?O=HJOAU9OSFIIAR-STDL (2004年10月30日)