簡易檢索 / 詳目顯示

研究生: 蘇豐祁
Su, Feng-Chi
論文名稱: 高週波電漿濺鍍程序製備質子交換膜燃料電池PtRu電極之研究
Proton Exchange Membrane Fuel Cell PtRu Electrodes Prepared by a Plasma Sputtering Process
指導教授: 黃國林
Huang, Guo-Lin
李文智
Lee, Wen-Jr
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 118
中文關鍵詞: 燃料電池CO毒化PtRu電極膜電極組電漿濺鍍
外文關鍵詞: PtRu electrode, Plasma sputtering, CO poisoning, Membrane electrode assembly, Fuel cell
相關次數: 點閱:133下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   氫能為目前甚具發展潛力的清潔能源,將之運用在燃料電池技術上,具備了高效率、低污染的優點。而使用氫為燃料的質子交換膜燃料電池 (PEMFC) 技術研發則甚受重視。由於氫燃料與空氣中含有少量的CO分子,CO分子會吸附於PEMFC電極電催化劑之白金表面造成毒化,使得電池效能降低,而使用PtRu取代純Pt為電極催化劑則可以降低CO毒化作用。高週波電漿磁控濺鍍方式可用於製備PEMFC膜電極组 (MEA) 陽極中之電催化劑,本研究乃使用濺鍍壓力10-3 torr,以不同濺鍍功率 (50 W,100 W,150 W) 將PtRu 0.4 mg/cm2 直接被附於碳布製備陽極,陰極則使用濺鍍壓力10-3 torr,濺鍍功率100 W,將Pt 0.1 mg/cm2被附於碳布上,以熱壓方式組裝MEA,測試各MEA未受CO毒化前及其受CO毒化後之效能。

      研究結果顯示:以電漿濺鍍程序製備Pt及PtRu電極時,操作功率對白金沉積率的影響成正比的關係,於50 W、100 W及150 W濺鍍功率下之Pt沉積率分別為18.2、32.2及37.3 nm/min;於50 W、100 W及150 W濺鍍功率下之Pt0.83Ru0.17沉積率分別為2.8、3.4及3.8 nm/min;於50 W、100 W及150 W濺鍍功率下之Pt0.47Ru0.53沉積率分別為1.61、2.49及3.18 nm/min。在SEM下觀察觸媒層的表面,發現150 W製備的Pt0.83Ru0.17合金電極發現有纖維狀的Pt分布。於XRD圖譜中推算Pt/C及Pt-Ru/C的晶粒大小,50 W、100 W及150 W濺鍍功率下之Pt/C晶粒介於7.02 ~ 8.78 nm之間,而Pt-Ru/C則介於1.97 ~ 2.53之間,顯示加入釕之後,晶粒變小。於極化曲線量測上,Pt陽極之電池以100 W製備者有較佳放電效能,Pt-Ru合金陽極電池則以50 W Pt0.83Ru0.17製備者有最佳放電效能。在循環伏安法分析中,純白金陽極未經CO毒化前的活性面積介於0.983~3.17 mC/mg之間。電極經20 ppm CO毒化前,50 W製備陽極Pt0.83Ru0.17合金電極有最大之放電功率,於電流密度為500 mA/cm2時,放電功率為212 mW/cm2;經CO毒化後,150 W製備陽極Pt0.47Ru0.53合金電極有最大之放電功率,於電流密度為53.6 mA/cm2時,放電功率為18.3 mW/cm2。在交流阻抗分析實驗中,於0.7 V下測交流阻抗,於150 W濺鍍功率下製備之純白金陽極觸媒電極有較大之歐姆阻抗及電荷轉移阻抗,50 W及100 W製備之純白金陽極觸媒電極有相近之歐姆阻抗。在Pt0.83Ru0.17合金陽極電極電池中,50 W及150 W製備者有相似之電荷轉移阻抗,100 W功率製備者則有較大之電荷轉移阻抗。在Pt0.47Ru0.53合金陽極電極電池中,100 W及150 W製備者有相近之歐姆阻抗,而50 W製備者卻有較大的電荷轉移阻抗。

      Hydrogen is a clean fuel and its use can alleviate the emission of air pollutants and CO2 resulted from fossil fuel combustion and associated with global warming. The hydrogen fuel can be used by proton excharge membrane fuel cells (PEMFCs) for power generation. Presently, much attention has been paid to the R&D of PEMFC technologies. Platinum is commonly used for electrocatalyization in PEMFC electrodes; hower, Pt is usually poisoned by CO tracely present in the hydrogen fuel and air. For CO tolerance, PtRu bimetal is superior to Pt alone. PEMFC PtRu electrodes can be prepared by sputter deposition techniques. In this study, therefore, the PtRu electrodes were fabricated using a plasma sputtering process in which Pt and Ru catalysts were deposited directly onto Gore carbon particles (supported CARBEL with carbon clothes) (at 10-3 torr and the powers of 50, 100, and 150 W) to form PtRu anode electrodes. The PtRu/C electrodes were hot-pressed with Nafion-117 membranes and Gore Pt/c electrodes to fabricate membrane-electrode-assemblies (MEAs). In addition to CV and AC impedance measurements, cell polarization measurements were conducted to compare the performances of MEAs with/without CO poisoning.

      Results show that using plasma sputtering process to prepare the Pt and PtRu electrodes, the operation power the relations which are proportional to the platinum deposition rate. In 50 W, 100 W and 150 W, the Pt deposition rate respectively is 18.2, 32.2 and 37.3 nm/min; in 50 W, 100 W and 150 W, the alloy Pt0.83Ru0.17 deposition rate respectively is 2.8, 3.4 and 3.8 nm/min; in 50 W, 100 W and 150 W, the alloy Pt0.47Ru0.53 deposition rate respectively is 1.61, 2.49 and 3.18 nm/min. Observing the catalyst surface under the SEM, we found the fibrous Pt distribution in 150 W case with a Pt0.83Ru0.17 anode. According to the XRD atlas, the Pt/C grain size area of 50 W, 100 W and 150 W cases is between 7.02 ~ 8.78 nm, and the Pt-Ru/C grain size area is between 1.97 ~ 2.53. We know that the crystal grain changes small after adding Ru. In I-V curves for the MEAs, the cell of 100 W case with a Pt/C anode has the better electric discharge, and the cell of 50 W case with a Pt-Ru/C anode has the best electric discharge. The electrochemical surface areas of Pt/C anodes were 0.983–3.17 mC/mg. The MEA for the 50 W case with a Pt0.83Ru0.17 anode displayed a better performance (maximum power density = 212 mW/cm2 at 500 mA/cm2) than the others. After poisoning by CO, the maximum power density was 18.3 mW/cm2 (at 53.6 mA/cm2) for the 150 W case with a Pt0.47Ru0.53 anode. According to AC impedance measurements (at 0.7 V), the ohmic and kinetic resistances (Rs and Rct, respectively) of MEA with the pure Pt catalysts anode for the 150 W case were larger than those of 50 W and 100 W cases. The Rs values of 50 W and 100 W cases were similar. For the Pt0.83Ru0.17 anode, the Rct value was larger for 100 W case than for 50 and 100 W cases. For the Pt0.47Ru0.53 anode, the Rct value for 50 W case was larger than those for the other two case.

    摘要 I Abstract III 誌謝 V 總目錄 VI 表目錄 IX 圖目錄 X 第一章 前言 1 第二章 文獻回顧 2 2-1 能源的使用及未來的發展趨勢 2 2-1-1 能源利用與環境問題 2 2-1-2 遭遇的危機 4 2-1-3 氫能的使用 6 2-2 燃料電池簡介 7 2-2-1 發展歷史 7 2-2-2 燃料電池的種類 9 2-3 質子交換膜燃料電池的原理與構造 12 2-3-1 質子交換膜內的水管理 13 2-3-2 反應氣體在電極層內部的輸送現象 13 2-3-3 一氧化碳毒化Pt觸媒現象 16 2-3-3a 抗CO毒化之合金觸媒 17 2-3-3b 釕催化一氧化碳的機制 19 2-4 質子交換膜燃料電池膜電極組及電極的製備 21 2-4-1 膜電極組的構造 21 2-4-2 射頻磁控電漿濺鍍原理製備電極 24 2-5 電池性能分析 28 2-5-1 電流-電壓極化曲線(I-V curve) 28 2-5-2 循環伏安法(CV) 30 2-5-3 交流阻抗分析(AC impedance) 32 第三章 實驗設備與步驟 38 3-1 實驗流程 38 3-2 藥品與儀器設備 40 3-3 濺鍍法製備膜電極組 41 3-3-1 射頻磁控濺鍍系統 41 3-3-2 濺鍍操作參數控制 42 3-3-3 Nafion membrane(陽離子質子交換膜固體電解質)的前處理 43 3-3-4 白金觸媒層的製備 44 3-3-5 合金(Pt-Ru)觸媒層的製備 45 3-4 合金觸媒電極表面性質分析 47 3-4-1 元素成分分析(EDS) 47 3-4-2 掃描式電子顯微鏡(SEM) 47 3-4-3 X光薄膜繞射儀(XRD) 48 3-5 電池放電測試 49 3-5-1 單電池組組裝 49 3-5-2 燃料電池測試系統組裝 51 3-6 交流阻抗分析(AC impedance) 53 3-7 循環伏安法(CV)分析 54 3-8 電極毒化 54 3-9 CO脫附(CO stripping) 55 第四章 結果與討論 56 4-1觸媒層特性表面分析 56 4-1-1 濺鍍率分析 56 4-1-1-1 輸入功率之影響 56 4-1-1-2 Pt及Ru比例不同之影響 58 4-1-2 掃描式電子顯微鏡(SEM)分析 61 4-1-3 元素成分(EDS)分析 66 4-1-4 X光繞射(XRD)分析 68 4-2 CO毒化前電池放電效能分析 75 4-2-1 極化曲線之量測 75 4-2-2 循環伏安法分析 81 4-2-3 交流阻抗分析 84 4-3 CO毒化後電池放電效能分析 92 4-3-1 極化曲線之量測 92 4-3-2 循環伏安法分析 97 4-3-3 交流阻抗分析 100 4-3 CO脫附 104 4-5 經CO毒化前後電池/電極效能比較 105 第五章 結論與建議 108 5-1 結論 108 5-2 建議 109 參考文獻 110

    (1) W. J. Oswald. “Ponds in the Twenty-First Century”, Wat. Sci. Tech. Vol. 31, No. 12, pp. 1-8,1995.
    (2) A. B. Stambouli, ; E. Traversa, “Fuel Cells, An Alternative to Standard Sources of Energy”, Renewable and Sustainable Energy Reviews, Vol. 6, pp. 297-306, 2002.
    (3) 蓋婭-大地之母環保生活資訊網 (http://gaia.org.tw/air/care/air2-1.htm)
    (4) I. Dincer, “Environmental Impacts of Energy”, Energy Policy, Vol. 27, pp. 845-854, 1999.
    (5) 詡寧逸、顏溪成,“由碳能朝向氫能的燃料電池”,科學發展,367期,6-11頁,2003年7月
    (6) J. Larminie, ; A. Dicks, “Fuel Cell Systems Explained”, John Wiley & Son, Inc., 2000.
    (7) 蔡克群,“燃料電池導論”,化工技術,第10卷,第6期,122-131
    頁,2002
    (8) E. M. Stuve, Fuel Cell Engineering Course Notes, 1998.
    (9) 田福助,“電化學-理論與應用”,第七章,高立圖書有限公司
    (10) 陽志忠、林頌恩、韋文誠,“燃料電池的發展現況”,科學發展,367期,30-33頁,2003年7月
    (11) M. Dawn Bernardi, Verbrugge Mark W., “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, J. Electrochem. Soc., Vol. 139, pp.2477, 1992.
    (12) 薛志鴻,“質子交換膜型燃料電池電極在CO存在下之阻抗分析”,國立成功大學化學工程學系碩士論文,2003年7月

    (13) P. G. Dirven, ; W. J. Engelen, ; C. J-M. Van der poorten, “An Oxygen Electrode for Air-Consuming Proton Exchange Membrane Fuel Cells for Transportation Applications”, J. Appl. Electrochem., Vol. 25, pp. 122-125, 1995
    (14) 陳德蔭、林昇佃,“PEFC燃料電池電極觸媒的分析”,化工技術,第10卷,第6期,186-210頁,2002
    (15) T. E. Springer, D. Raistrick, “Electrical Impedance of a Pore Wall for the Flooded Agglomerate Model of Porous Gas Diffusion Electrodes”, J. Electrochem. Soc. Vol. 136, pp. 1594, 1989.
    (16) G. T. K. Acres, ; J. G. Frost, ; G. A. Hards, ; R. J. Potter,; T. R. Ralph,; D. Thompsett, ; G. T. Burstein, ; Hutchings, G. J. “Electrocatalysts for Fuel Cells”, Catalysis Today, Vol. 38, pp. 393, 1997.
    (17) 薛清益,“擴散層疏水含量對質子交換膜燃料電池性能之研究”,工業材料,2005年8月
    (18) K. Kordesch, G. Simader, Fuel Cells and Their Application, Weinheim, New York, Basel, Cambridge, Tokyo, 1996.
    (19) E. A Ticianelli, C. R. Derouin, A. Redondo, S. Srinivasan, “Methods to Advance Technology of Proton Exchange Membrane Fuel Cells”, J. Electrochemical. Soc., Vol. 135, pp. 2209, 1998
    (20) M. S. Wilson, S. Gottesfeld, “Thin-Film Catalyst Layers for Polymer Electrolyte Fuel Cell Electrodes”, J. Appl. Electrochemistry, Vol. 22, pp. 1-7, 1992.
    (21) S. Y. Cha and W. M. Lee, “Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface”, J. Electrochemical Soc., Vol. 146(11), pp. 4055-4060, 1999
    (22) P. Costamagna, S. Srinivasan, J. Power Sources Vol. 102, pp. 242, 2001
    (23) H. F. Oetjen, V. M. Schmidt, U. Stimming, F. Trila, “Performance Data of a Proton Exchange Membrane Fuel Cell Using H2/CO as Fuel Gas”, J. Electrochemical Soc. Vol. 143, No. 12, pp. 3838, 1996.
    (24) F. A. de Bruijn, D. C. Papageorgopoulos, E. F. Sitters, G. J. M. Janssen, “The Influence of Carbon Dioxide on PEM Fuel Cell Anodes”, Journal of Power Sources 110, pp. 117-124, 2002
    (25) A. Hubert Gasteiger, M. Nenad Markovic, Philip N. Ross, Jr., “H2 and CO Electrooxidation on Well-Characterized Pt, Ru, and Pt-Ru. 2. Rotating Disk Eletrode Studies of CO/H2 Mixtures at 62℃”, J. Phys. Chem. Vol. 99, pp. 16757-16767, 1995.
    (26) Yu Morimoto, Ernest. B. Yeager, “CO Oxidation on Smooth and High Area Pt, Pt-Ru and Pt-Sn Electrodes”, Journal of Electroanalytical Chemistry Vol. 441, pp. 77-81, 1998.
    (27) Eleanor M. Crabb, Robert Marshall, David Thompsett, “Carbon Monoxide Electro-oxidation Properties of Carbon-Supported PtSn Catalysts Prepared Using Surface Organometallic Chemistry”, Journal of The Electrochemical Society Vol. 147, pp. 4440-4447, 2000.
    (28) Sanjeev Mukerjee and James McBreen, “An In X-Ray Absorption Spectroscopy Investigation of the Effect of Sn Additions to Carbon-Supported Pt Electrocatalysts”, Journal of the Electrochemical Society Vol. 146, pp. 600-606, 1999.

    (29) B. N. Grgur, N. M. Markovic, P. N. Ross, “Electrooxidation of H2, CO and H2/CO Mixtures on a Well-Characterized Pt-Re Bulk Alloy Electrode and Comparison with other Pt Binary Alloys”, Electrochimica Acta Vol. 43, pp. 3631-3635, 1998.
    (30) P. Gouerec, M. C. Denis, D. Guay, J. P. Dodelet, R. Schulz, “High Energy Ballmilled Pt-Mo Catalysts for Polymer Electrolyte Fuel Cells and Their Tolerance to CO”, Journal of the Electrochemical Society Vol. 147, pp. 3989-3996, 2000.
    (31) B. G. Grgur, G. Zhuang, N. M. Markovic, P. N. Ross, Jr., “Electrooxidation of H2/CO Mixtures on a Well-Characterized Pt75Mo25 Alloy Surface”, J. Phys. Chem. Vol. 101, pp. 3910-3913, 1997.
    (32) B. G. Grgur, G. Zhuang, N. M. Markovic, P. N. Ross, Jr., “Electrooxidation of H2/CO, and H2/CO Mixtures on a Well-Characterized Pt70Mo30 Bulk Alloy Electrode”, J. Phys. Chem. Vol. 102, pp. 2494-2501, 1998.
    (33) D. C. Papageorgopoulos, M. Keijzer, F. A. de Bruijn, “The inclusion of Mo, Nb and Ta in Pt and PtRu Carbon Supported 3-electrocatalysts in the Quest for Improved CO Tolerant PEMFC anodes”, Electrochimica Acta Vol. 48, pp. 197-204, 2002.
    (34) Shawn D. Lin and Ting-Chou Hsiao, “Morphology of Carbon Supported Pt-Ru Electrocatalyst and the CO Tolerance of Anodes for PEM Fuel Cells”, J. Phys. Chem. Nol. 103, pp. 97-103, 1999.
    (35) T. E. Shubina, M. T. M. Koper, “Quantum-Chemical Calculations of CO and OH Interacting with Bimetallic Surfaces”, Electrochima Acta Vol. 47, pp. 3621-3628, 2002.
    (36) Meng-Sheng Liao, Carlos R. Cabrera, Yasuyuki Ishikawa, “A Theoretical Study of CO Adsorption on Pt, Ru and Pt-M (M=Ru, Sn, Ge) Clusters”, Surface Science Vol. 445, pp. 267-282, 2000.
    (37) Hubert A. Gasteiger, Nenad M. Markovic, Philip N. Ross, Jr., Elton J. Cairns, “CO Electrooxidation on Well-Characterized Pt-Ru Alloys”, J. Phys. Chem. 98, pp. 617-625, 1994.
    (38) R. Ianniello, V. M. Schmidt, U. Stimming, J. Stumper, A. Wallau, “CO Adsorption and Oxidation on Pt and Pt-Ru Alloys: Dependence on Substrate Composition”, Electrochimica Acta, Vol. 39, pp. 1863-1869, 1994.
    (39) W. F. Lin, T. Iwasita, W. Vielstich, “Catalysis of CO Electrooxidation at Pt, Ru, and PtRu Alloy. An in Situ FTIR Study”, J. Phys. Chem. Vol. 103, pp. 3250-3257, 1999.
    (40) 黃朝榮、林修正,“燃料電池的心臟-電極膜组”,科學發展,367期,26-29頁,2003年7月
    (41) K. B. Prater, “Polymer Electrolyte Fuel Cells: A Review of Recent Developments”, J. Power Source, Vol. 51, pp. 129, 1994.
    (42) D. H. Jung, C. H. Lee, C. S. Lim, D. R. Shin, J. Power Source 71, 169, 1998
    (43) S. R. Narayanan, A. Kindler, B. Jeffries-Nakamura, W. Chun, H. Frank, M. Smart, T. I. Valdez, S. Surampudi, G. Halpert, Annu. Battery Conf. Appl. Adv. 11, 113, 1996
    (44) K. Wasa, ; S. Hayakawa, “Handbook of Sputter Deposition Technology”, Noyes Publications, 1991.

    (45) O’Hayre, R.; Lee, S-J.; Cha, S-W.; Prinz, F. B. “A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading”, J. Power Source, Vol. 109, pp. 483-493, 2002.
    (46) B. Chapman, “Glow Discharge Processes”, 1980.
    (47) 高正雄譯著,“超LSI時代-電漿化學”,復漢出版社,1997
    (48) D. M. Mttox, “Handbook of Physical Vapor Deposition (PVD) Processing”, Noyes Publications, Park Ridge, New Jersey, USA, 1998.
    (49) S. M. Rossnagel, ; J. J. Cuomo, ; W. D. Westwood, “Handbook of Plasma Technology”, Noyes Publications, Park Ridge, New Jersey, USA, 1990.
    (50) 林謙田,“顯微組織對Al-Cr合金靶材濺鍍行為之影響”, 國立成功大學材料科學及工程學系碩士論文,2003
    (51) 洪昭男,“電漿反應器”,化工技術,第3卷,第3期,124-135頁,1995
    (52) 衣寶廉、黃朝榮、林修正,“燃料電池-原理與應用”,五南出版社,2005
    (53) A. J. Bard, ; L. R. Faulkner, “Electrochemical methods fundamentals and applications”, JOHN WIELY & SONS,INC., 2001.
    (54) 熊楚強、王月,“電化學”,文京圖書有限公司,1995
    (55) M. S. Wilson, ; S. Gottesfeld, “Thin-Film Catalyst Layers for Polymer Electrolyte Fuel Cell Electrodes”, J. Appl. Electrochem., Vol. 19, pp.1, 1992.
    (56) T. A. Zawodzinski, ; C. Derouin, ; S. Radzinski, ; R. J. Sherman, ; V. T. Smith, ; T. E. Springer, ; S. Gottesfeld, “Water Uptake by and Transport through Nafion 117 Membrane”, J. Electrochem. Soc., Vol. 140, pp.1041, 1993.
    (57) 林昱志,“質子交換膜型燃料電池阻抗之分析”,國立成功大學化工系碩士論文,2001
    (58) P. G. Dirven, ; W. J. Engelen, ; C. J-M. Van der poorten, “An oxygen electrode for air-consuming proton exchange membrane fuel cells for transportation applications”, J. Appl. Electrochem., Vol. 25, pp. 122-125, 1995
    (59) W. Vielstich, ; H. A. Gasteiger, ; A. Lamm, “Handbook of Fuel Cells-Fundamentals, Technology and Applications”, Vol.2, 2003.
    (60) D. K.; Jr. Gosser, “Cyclic Voltammetry simulation and analysis of reaction mechanisms”, VCH publisher, Inc., 1994.
    (61) Cho, E.; Ko, J.-J.; Ha, H. Y.; Hong, S.-A.; Lee, K.-Y.; Lim, T.-W.; Oh, I.-H. “Effect of Water Removal on the Performance Degradation of PEMFCs Repetitively Brought to <0℃”, J. Electrochem. Soc., Vol. 151, pp. A661-A665, 2004.
    (62) G. Sasikumar, ; J. W. Ihm, ; H. Ryu, “Depedance of optimum Nafion content in catalyst layer on platinum loading”, J. Power Source, Vol. 132, pp. 11-17, 2004.
    (63) A. Pozio,; M. D. Francesco, ; A. Cemmi, ; F. Cardellini, ; L. Giorgi, “Comparison of high surface Pt/C catalysts by cyclic voltammetry”, J. Power Source, Vol. 105, pp. 13-19, 2002.
    (64) 吳浩青、李永舫,“電化學動力學”,科技圖書股份有限公司,2001
    (65) 柯以侃、吳明珠,“儀器分析”,文京圖書有限公司,1997
    (66) 台灣因應氣候變化綱要公約資訊網 (Facing Global Warming)
    (http://www.tri.org.tw/unfccc/main05.htm)

    (67) 行政院環境保護署,“空氣污染對健康的影響”,(http://www.epa.gov.tw/b/b_print.asp?Ct_Code=06X0001299X0005444)
    (68) 左俊德、何玉麗、林祐民、張詩韻,“台灣燃料電池產業發展策略之研究”,財團法人台灣經濟研究院,2-6頁,2000
    (69) 梁書豪、蔡克群,“高分子電解質燃料電池(PEMFC)設計製作”,化工技術,第10卷,第6期,166-175頁,2002
    (70) J. L. Vossen, ; W. Kerm, “Thin Film Process”, Academic Process, pp.134, 1999.
    (71) 賴怡潔,“高週波電漿濺鍍程序製備質子交換膜燃料電池電極”,國立成功大學環境工程學系碩士論文,2005年6月
    (72) S. J. Lee, ; S. Mukerjee, ; J. McBreen, ; Y. W. Rho, ; Y. T. Kho, ; T. H. Lee, “Effects of Nafion impregnation on performances of PEMFC electrodes”, Electrochim. Acta, Vol. 43, pp. 3693-3701, 1998.
    (73) Cha, S. Y.; Lee, W. M. “Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Platinum on the Membrane Surface”, J. Electrochem. Soc., Vol. 146, pp. 4055-4060, 1999.
    (74) Yi, B. L., Yu, H. M., Hou, Z. J., “Electrocatalysts for Proton Exchange Membrane Fuel Cells in Dalian Institute of Chemical Physics”, Chinese Academy of Sciences-Study on the CO Tolerant Electrocatalyst.

    下載圖示 校內:2008-07-27公開
    校外:2008-07-27公開
    QR CODE