| 研究生: |
余承曄 Yu, Cheng-Yeh |
|---|---|
| 論文名稱: |
膽固醇與溫度效應對類乙醇體陰陽離子液胞的水溶性藥物釋放行為之影響 Effects of Cholesterol and Temperature on Release Behavior of Water-Soluble Drug in Ethosome-Like Catanionic Vesicles |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 類乙醇體陰陽離子液胞 、液胞物理特性 、液胞雙層膜剛性 、水溶性藥物包覆效率 、水溶性藥物釋放行為 、溫度效應 、膽固醇效應 |
| 外文關鍵詞: | ethosome-like catanionic vesicles, hydrophilic drug encapsulation efficiency, hydrophilic drug release behaviors, temperature effect, cholesterol effect |
| 相關次數: | 點閱:128 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的是開發類乙醇體陰陽離子液胞(ethosome-like catanionic vesicle)作為經皮藥物傳輸的載體。首先使用沉澱法製備三種不同碳鏈長度的類脂質離子對雙親分子(ion-pair amphipile, IPA),分別為DeTMA-DS、DeTMA-TS以及DTMA-DS。然後透過半自發製程,在含20%乙醇的緩衝溶液中製備三種類乙醇體陰陽離子液胞,用以包覆水溶性藥物熊果素(Arbutin)。並進一步探討膽固醇的添加對類乙醇體陰陽離子液胞的物理特性和藥物包覆效率之影響。此外,也探討膽固醇濃度及溫度對藥物釋放行為的影響。
實驗結果顯示,膽固醇的添加對初始粒徑及介面電位之影響並不顯著,但是對管柱分離後液胞粒徑則會有不同的結果。對DeTMA-DS與DeTMA-TS兩個系統,分離後粒徑隨膽固醇濃度增加而增大,而DTMA-DS系統無明顯變化。此結果與膽固醇濃度對包覆效率的影響呈現正相關,但與液胞雙層膜剛性則無一致的關聯,進而推論主導水溶性藥物包覆效率的因素為液胞粒徑,而非雙層膜剛性。溫度上升都會使藥物釋放速率增快;而膽固醇對釋放速率的影響則隨著溫度高低而有不同的結果。在凝膠相(gel phase)添加膽固醇會使其釋放速率加快;在液晶相(liquid-crystalline phase)添加膽固醇會使其釋放速率減緩,推論原因與膽固醇對不同相態的雙層膜剛性有相反作用所致。
This study aimed at developing ethosome-like catanionic vesicles for transdermal drug delivery. Three ion-pair-amphiphiles, were prepared by precipitation method. They were DeTMA-DS, DeTMA-TS and DTMA-DS, respectively, and were thereafter used as the raw materials for preparing stable ethosome-like catanionic vesicles with the aid of cholesterol and ethanol in aqueous buffer solution whose pH value was 7.4 by the semispontaneous process. The potential applications of the ethosome-like catanionic vesicles as nano-carriers in dermal drug delivery were demonstrated to study cholesterol and temperature effects by release behavior of Arbutin, a water-soluble drug. Furthermore, effects of cholesterol on physical properties and encapsulation efficiency. Experimental results showed that the vesicle size in DeTMA-DS and DeTMA-TS systems were increased, and in DTMA-DS system didn’t change obviously. These results were similar with encapsulation efficiency. Vesicle size was a dominant factor on encapsulation of water-soluble drugs. In the parts of drug release, when the temperature from 20°C to 40°C would make the release rate fast. However, cholesterol caused opposite effects on the release rate for vesicular bilayers at different phases. While release rate was increased with the increase of cholesterol concentration for bilayers at gel phase, release rate was decreased with the increase of cholesterol concentration for bilayers at liquid crystalline phase. The opposite cholesterol effects on release rate were explained by the disordering and condensation effects, respectively, on the rigidity of vesicular bilayers.
(1) A. Jesorka and O. Orwar, "Liposomes: technologies and analytical applications," Annu Rev Anal Chem (Palo Alto Calif), vol. 1, pp. 801-832, 2008.
(2) T. M. Allen and P. R. Cullis, "Drug delivery systems: entering the mainstream," Science, vol. 303, pp. 1818-1822, 2004.
(3) Q. Liu and B. J. Boyd, "Liposomes in biosensors," Analyst, vol. 138, pp. 391-409, 2013.
(4) M. M. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, "Lipid vesicles for skin delivery of drugs: reviewing three decades of research," Int J Pharm, vol. 332, pp. 1-16, 2007.
(5) S. Bhattacharya and S. Haldar, "Interactions between cholesterol and lipids in bilayer membranes.," Biochim. Biophy, Acta, vol. 1467, pp. 39-53, 2000.
(6) M. J. Blandamer, B. Briggs, P. M. Cullis, and J. B. F. N. Engberts, "Gel to liquid-crystal transitions in synthetic amphiphile vesicles," Chemical Society Reviews, vol. 24, pp. 251-257, 1995.
(7) Y. C. Chung and S. L. Regen, "Counterion control over the barrier properties of bilayers derived from double-chain ionic surfactants," Langmuir, vol. 9, pp. 1937-1939, 1993.
(8) E. W. M. Kaler, A. K.; Rodriguez, B. E.; Zasadzinski, A. N. , "Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants.," Science, vol. 245, pp. 1371-1374, 1989.
(9) E. F. Marques, O. Regev, A. Khan, and B. Lindman, "Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects," Advances in Colloid and Interface Science, vol. 100-102, pp. 83-104, 2003.
(10) C. Tondre and C. Caillet, "Properties of the amphiphilic films in mixed.," Adv. Colloid. Int. Sci., vol. 93, pp. 115-134, 2001.
(11) R. K. Subedi, S. Y. Oh, M. K. Chun, and H. K. Choi, "Recent advances in transdermal drug delivery," Arch Pharm Res, vol. 33, pp. 339-351, 2010.
(12) C. L. Chien, S. J. Yeh, Y. M. Yang, and C. H. Chang, "Formation and Encapsulation of Catanionic Vesicles," J. Chin Colloid & Interface Soc., vol. 24, pp. 31-45, 2002.
(13) S. J. Yeh, Y. M. Yang, and C. H. Chang, "Cosolvent effects on the stability of catanionic vesicles formed from ion-pair amphiphiles.," Langmuir, vol. 21, pp. 6179-6184, 2005.
(14) E. Soussan, S. Cassel, M. Blanzat, and I. Rico-Lattes, "Drug delivery by soft matter: matrix and vesicular carriers," Angew Chem Int Ed Engl, vol. 48, pp. 274-288, 2009.
(15) H. Fukuda, K. Kawata, and H. Okuda, "Bilayer-forming ion-pair amphiphiles from single-chain surfactants.," J. Am. Chem. Soc., vol. 112, pp. 1635-1637, 1990.
(16) M. H. Chung and Y. C. Chung, "Polymerized ion pair amphiphile that shows remarkable enhancement in encapsulation efficiency and very slow release of fluorescent markers.," Colloids and Surfaces B: Biointerfaces, vol. 24, pp. 111-121, 2002.
(17) W. T. Li, Y. M. Yang, and C. H. Chang, "Langmuir monolayer behavior of an ion pair amphiphile with a double-tailed cationic surfactant," Colloids Surf B Biointerfaces, vol. 66, pp. 187-194, 2008.
(18) Z. L. Huang, J. Y. Hong, C. H. Chang, and Y. M. Yang, "Gelation of charged catanionic vesicles prepared by a semispontaneous process," Langmuir, vol. 26, pp. 2374-2382, 2010.
(19) K.C. Wu, Z. L. Huang, Y. M. Yang, C. H. Chang, and T. H. Chou, "Enhancement of catansome formation by means of cosolvent effect: Semi-spontaneous preparation method," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 302, pp. 599-607, 2007.
(20) Y. M. Yang, K. C. Wu, Z. L. Huang, and C. H. Chang, "On the stability of liposomes and catansomes in aqueous alcohol solutions.," Langmuir, vol. 24, pp. 1695-1700, 2008.
(21) G. Cevc and G. Blume, "Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force.," Biocllimica et Biophysica Acta, vol. 1104, pp. 226-232, 1992.
(22) E. Touitou, N. Dayana, L. Bergelsonb, B. Godina, and M. Eliaza, "Ethosomes novel vesicular carriers for enhanced delivery.," Journal of Controlled Release, vol. 65, pp. 403-418, 2000.
(23) M. M. Elsayed, O. Y. Abdallah, V. F. Naggar, and N. M. Khalafallah, "Deformable liposomes and ethosomes: mechanism of enhanced skin delivery," Int J Pharm, vol. 322, pp. 60-66, 2006.
(24) S. L. Krill, K. Kuntson, and W. I. Higuchi, "Ethanol effects on the stratum corneum lipid phase behavior.," Biochimica et Biophysica Acta, vol. 1112, pp. 273-280, 1992.
(25) O. A. Ogunsola, M. E. Kraeling, S. Zhong, D. J. Pochan, R. L. Bronaugh, and S. R. Raghavan, "Structural analysis of “flexible” liposome formulations: new insights into the skin-penetrating ability of soft nanostructures," Soft Matter, vol. 8, pp. 10226-10232, 2012.
(26) K. A. Walters, Dermatological and transdermal formulations, Marcel Dekker, New York, 2002.
(27) N. Dayan and E. Touitou, "Carriers for skin delivery of trihexyphenidyl HCl-ethosomes vs. liposomes.," Biomaterials, vol. 21, pp. 1879-1885, 2000.
(28) V. Dubey, D. Mishra, and N. K. Jain, "Melatonin loaded ethanolic liposomes: physicochemical characterization and enhanced transdermal delivery," Eur J Pharm Biopharm, vol. 67, pp. 398-405, 2007.
(29) D. Paolino, G. Lucania, D. Mardente, F. Alhaique, and M. Fresta, "Ethosomes for skin delivery of ammonium glycyrrhizinate: in vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers," J Control Release, vol. 106, pp. 99-110, 2005.
(30) Z. Zhang, Y. Wo, Y. Zhang, D. Wang, R. He, H. Chen, et al., "In vitro study of ethosome penetration in human skin and hypertrophic scar tissue," Nanomedicine, vol. 8, pp. 1026-1033, 2012.
(31) G. Cevc, "Lipid vesicles and other colloids as drug carriers on the skin," Adv Drug Deliv Rev, vol. 56, pp. 675-711, 2004.
(32) M. V. Gele, B. Geusens, L. Brochez, R. Speeckaert, and J. Lambert, "Three-dimensional skin models as tools for transdermal drug delivery challenges and limitations.," Expert Opin. Drug Deliv, vol. 8, pp. 705-720, 2011.
(33) J. N. Israelachvili, "Fluid-like structures and self-assembling systems," Part 3 in Intermolecular and Surface Forces, 2nd ed London: Academic Press, 1991, pp. 341-421.
(34) J. B. Huang and G. X. Zhao, "Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant.," Colloid Polym Sci, vol. 273, pp. 156-164, 1995.
(35) J. B. Huang, B. Y. Zhu, M. Mao, P. He, J. Wang, and X. He, "Vesicle formation of 1-1 cationic and anionic surfactant mixtures in nonaqueous polar solvents.," Colloid Polym Sci, vol. 277, pp. 354-360, 1999.
(36) J. B. Huang, B. Y. Zhu, G. X. Zhao, and Z. Y. Zhang, "Vesicle formation of a 1-1 catanionic surfactant mixture in ethanol solution.," Langmuir, vol. 13, pp. 5759-5761, 1997.
(37) X. R. Zhang, J. B. Huang, M. Mao, S. H. Tang, and B. Y. Zhu, " From precipitation to vesicles a study on self-organized assemblies by alkylammonium and its mixtures in polar solvents.," Colloid Polym Sci, vol. 279, pp. 1245-1249, 2001.
(38) R. Ramsch, S. Cassel, and I. Rico-Lattes, "Impact of solvent physical parameters on the aggregation process of catanionic amphiphiles," Langmuir, vol. 25, pp. 6733-6738, 2009.
(39) N. Sarma, J. M. Borah, S. Mahiuddin, H. A. Gazi, B. Guchhait, and R. Biswas, "Influence of chain length of alcohols on Stokes' shift dynamics in catanionic vesicles," J Phys Chem B, vol. 115, pp. 9040-9049, 2011.
(40) W. Y. Yu, Y. M. Yang, and C. H. Chang, "Cosolvent effects on the spontaneous formation of vesicles from 1:1 anionic and cationic surfactant mixtures.," Langmuir, vol. 21, pp. 6185-6193, 2005.
(41) C. Wang, S. Tang, J. Huang, X. Zhang, and H. Fu, "Transformation from precipitates to vesicles in mixed cationic and anionic surfactant systems," Colloid & Polymer Science, vol. 280, pp. 770-774, 2002.
(42) 邱文昱, "陰陽離子液胞包覆油/水溶性藥物之行為探討," 國立成功大學化學工程學系碩士論文, 2012.
(43) 邱俊瑋, "類乙醇體陰陽離子液胞的包覆/釋放與膠化行為之探討," 國立成功大學化學工程學系博士論文, 2013.
(44) 柯政遠, "乙醇體及陰陽體的製備及其包覆釋放行為之探討.," 國立成功大學化學工程學系碩士論文, 2008.
(45) 唐義立, "類乙醇體陰陽離子液胞的水溶性藥物包覆效率及釋放動力學探討," 國立成功大學化學工程學系碩士論文, 2015.
(46) 溫智芳, "經皮藥物傳輸用類乙醇體陰陽離子液胞之研發," 國立成功大學化學工程學系碩士論文, 2013.
(47) 葉如萍, "類乙醇體陰陽離子液胞的雙層膜特性與其包覆/釋放行為的關聯," 國立成功大學化學工程學系碩士論文, 2013.
(48) 劉育姍, "陰陽離子液胞包覆維他命E醋酸酯之行為探討," 國立成功大學化學工程學系碩士論文, 2011.
(49) A. McLaughlin, W. K. Eng, G. Vaio, T. Wilson, and S. McLaughlin, "Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential adjacent to negatively charged phospholipid bilayer membranes.," J. Membrane Biol., vol. 76, pp. 183-193, 1983.
(50) E. Evans and D. Needham, "Physical properties of surfactant bilayer membranes thermal transitions, elasticity, rigidity, cohesion and colloidal interactions.," J. Phys. Chem., vol. 91, pp. 4219-4228, 1987.
(51) M. G. Benesch, R. N. Lewis, D. A. Mannock, and R. N. McElhaney, "A DSC and FTIR spectroscopic study of the effects of the epimeric cholestan-3-ols and cholestan-3-one on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes: Comparison with their 5-cholesten analogs," Chem Phys Lipids, vol. 187, pp. 34-49, 2015.
(52) M. G. Benesch and R. N. McElhaney, "A comparative calorimetric study of the effects of cholesterol and the plant sterols campesterol and brassicasterol on the thermotropic phase behavior of dipalmitoylphosphatidylcholine bilayer membranes," Biochim Biophys Acta, vol. 1838, pp. 1941-1949, 2014.
(53) S. Bhattacharya and S. Haldar, "The effects of cholesterol inclusion on the vesicular membranes of cationic lipids.," Biochim. Biophys. Acta, vol. 1283, pp. 21-30, 1996.
(54) M. J. Blandamer, B. Briggs, P. M. Cullis, B. J. Rawlings, and J. B. F. N. Engberts, "Vesicle-cholesterol interactions: Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC," Physical Chemistry Chemical Physics, vol. 5, pp. 5309-5312, 2003.
(55) A. Deniz, A. Sade, F. Severcan, D. Keskin, A. Tezcaner, and S. Banerjee, "Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics," Bioscience Reports, vol. 30, pp. 365-373, 2010.
(56) G. M. M. El Maghraby, A. C. Williams, and B. W. Barry, "Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes," International Journal of Pharmaceutics, vol. 276, pp. 143-161, 2004.
(57) I. Fournier, J. Barwicz, M. Auger, and P. Tancrede, "The chain conformational order of ergosterol- or cholesterol-containing DPPC bilayers as modulated by Amphotericin B: a FTIR study," Chem Phys Lipids, vol. 151, pp. 41-50, 2008.
(58) K. J. Fritzsching, J. Kim, and G. P. Holland, "Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and C-13 solid-state NMR," Biochimica Et Biophysica Acta-Biomembranes, vol. 1828, pp. 1889-1898, 2013.
(59) K. K. Halling and J. P. Slotte, "Membrane properties of plant sterols in phospholipid bilayers as determined by differential scanning calorimetry, resonance energy transfer and detergent-induced solubilization," Biochim Biophys Acta, vol. 1664, pp. 161-171, 2004.
(60) R. Krivanek, L. Okoro, and R. Winter, "Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study," Biophys J, vol. 94, pp. 3538-3548, 2008.
(61) R. J. Malcolmson, J. Higinbotham, P. H. Beswick, P. O. Privat, and L. Saunier, "DSC of DMPC liposomes containing low concentrations of cholesteryl esters or cholesterol.," J. Membrane Sci, vol. 123, pp. 243-253, 1997.
(62) D. A. Mannock, M. Y. Lee, R. N. Lewis, and R. N. McElhaney, "Comparative calorimetric and spectroscopic studies of the effects of cholesterol and epicholesterol on the thermotropic phase behaviour of dipalmitoylphosphatidylcholine bilayer membranes," Biochim Biophys Acta, vol. 1778, pp. 2191-2202, 2008.
(63) D. A. Mannock, R. N. Lewis, and R. N. McElhaney, "Comparative calorimetric and spectroscopic studies of the effects of lanosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes," Biophys J, vol. 91, pp. 3327-3340, 2006.
(64) D. A. Mannock, R. N. Lewis, and R. N. McElhaney, "A calorimetric and spectroscopic comparison of the effects of ergosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes," Biochim Biophys Acta, vol. 1798, pp. 376-388, 2010.
(65) J. B. Massey, H. S. She, and H. S. Pownall, "Interaction of vitamin E with saturated phospholipid bilayers.," Biochem. Biophys. Res. Commun., vol. 106, pp. 842-847, 1982.
(66) T. McMullen, R. N. A. H. Lewis, and R. N. McElhaney, "Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes.," Biophys. J., vol. 79, pp. 2056-2065, 1999.
(67) T. P. McMullen, R. N. Lewis, and R. N. McElhaney, "Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes," Biochim Biophys Acta, vol. 1788, pp. 345-357, 2009.
(68) T. P. W. McMullen, R. Lewis, and R. N. McElhaney, "Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes," Biophysical Journal, vol. 79, pp. 2056-2065, 2000.
(69) F. Severcan, U. Baykal, and S. Suzer, "FTIR studies of vitamin E-cholesterol-DPPC membrane interactions in CH2 region.," Fresenius J. Anal. Chem., vol. 355, pp. 415-417, 1996.
(70) C. Silva, F. J. Aranda, A. Ortiz, V. Martinez, M. Carvajal, and J. A. Teruel, "Molecular aspects of the interaction between plants sterols and DPPC bilayers: an experimental and theoretical approach," J Colloid Interface Sci, vol. 358, pp. 192-201, 2011.
(71) W. Stillwell, T. Dallman, A. C. Dumaual, F. T. Crump, and L. J. Jenski, "Cholesterol versus α-tocopherol: Effects on properties of bilayer made from heteroacid phosphatidycholines.," Biochemistry vol. 35, pp. 13353-13362, 1996.
(72) L. Zhao, S. S. Feng, N. Kocherginsky, and I. Kostetski, "DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane," Int J Pharm, vol. 338, pp. 258-266, 2007.
(73) F. de Meyer and B. Smit, "Effect of cholesterol on the structure of a phospholipid bilayer," Proc Natl Acad Sci U S A, vol. 106, pp. 3654-3658, 2009.
(74) G. V. Betageri, "Liposomal encapsulation and stability of dideoxyinosine triphosphate," Drug Development and Industrial Pharmacy, vol. 19, pp. 531-539, 1993.
(75) B. Elorza, M. A. Elorza, G. Frutos, and J. R. Chantres, "Characterization of 5-fluorouracil loaded liposomes prepared by reverse-phase evaporation or freezing-thawing extrusion methods: study of drug release," Biochimica et Biophysica Acta, vol. 1153, pp. 135-142, 1993.
(76) S. B. Kulkarni, G. V. Betageri, and M. Singh, "Factors affecting microencapsulation of drugs in liposomes," J. Microencapsulation, vol. 12, pp. 229-246, 1995.
(77) N. Berger, A. Sachse, J. Bender, R. Schubert, and M. Brandl, "Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics," International Journal of Pharmaceutics, vol. 223, pp. 55-68, 2001.
(78) M. Glavas-Dodov, E. Fredro-Kumbaradzi, K. Goracinova, M. Simonoska, S. Calis, S. Trajkovic-Jolevska, et al., "The effects of lyophilization on the stability of liposomes containing 5-FU," Int J Pharm, vol. 291, pp. 79-86, 2005.
(79) P. Bandyopadhyay and M. Johnson, "Fatty alcohols or fatty acids as niosomal hybrid carrier: effect on vesicle size, encapsulation efficiency and in vitro dye release," Colloids Surf B Biointerfaces, vol. 58, pp. 68-71, 2007.
(80) S. A. Agnihotri, K. S. Soppimath, and G. V. Betageri, "Controlled release application of multilamellar vesicles: a novel drug delivery approach," Drug Deliv, vol. 17, pp. 92-101, 2010.
(81) F. M. Cagdas, N. Ertugral, S. Bucak, and N. Z. Atay, "Effect of preparation method and cholesterol on drug encapsulation studies by phospholipid liposomes," Pharmaceutical Development and Technology, vol. 16, pp. 408-414, 2011.
(82) X. Xu, M. A. Khan, and D. J. Burgess, "A quality by design (QbD) case study on liposomes containing hydrophilic API: I. Formulation, processing design and risk assessment," Int J Pharm, vol. 419, pp. 52-59, 2011.
(83) M. Alexander, A. Acero Lopez, Y. Fang, and M. Corredig, "Incorporation of phytosterols in soy phospholipids nanoliposomes: Encapsulation efficiency and stability," LWT - Food Science and Technology, vol. 47, pp. 427-436, 2012.
(84) B. Maherani, E. Arab-tehrany, A. Kheirolomoom, V. Reshetov, M. J. Stebe, and M. Linder, "Optimization and characterization of liposome formulation by mixture design," Analyst, vol. 137, pp. 773-786, 2012.
(85) O. A. Sammour, M. A. Mahdy, H. M. Elnahas, and A. A. Mowafy, "Liposomal gel as ocular delievery system for diclofenac sodium: In-vitro and In-vivo studies," International Journal of PharmTech Science and Research, vol. 4, pp. 215-224, 2013.
(86) E. R. Bendas and M. I. Tadros, "Enhanced transdermal delivery of salbutamol sulfate via ethosomes," AAPS PharmSciTech, vol. 8, 2007.
(87) M. M. Ibrahim, S. A. H. Tawfique, and M. M. Mahdy, "Liposomal diltiazem HCl as ocular drug delivery system for glaucoma," Drug Development and Industrial Pharmacy, vol. 40, pp. 765-773, 2014.
(88) H. Komatsu and S. Okada, "Increased permeability of phase-separated liposomal membranes with mixtures of ethanol-induced interdigitated and non interdigitated structures," Biochimica et Biophysica Acta, vol. 1237, pp. 169-175, 1995.
(89) J. Zeng, K. E. Smith, and P. L. G. Chong, "Effects of alcohol-induced lipid interdigitation on proton permeability in L-a-dipalmitoylphosphatidylcholine vesicles.," Biophysical Journal, vol. 65, pp. 1404-1414, 1993.
(90) J. Chen, D. Cheng, J. Li, Y. Wang, J.-x. Guo, Z.-p. Chen, et al., "Influence of lipid composition on the phase transition temperature of liposomes composed of both DPPC and HSPC," Drug Development and Industrial Pharmacy, vol. 39, pp. 197-204, 2013.
(91) K. Iga, N. Hamaguchi, Y. Igari, Y. Ogawa, H. Toguchi, and T. Shimamoto, "Heat-specific drug release of large unilamellar vesicle as hyperthermia-mediated targeting delivery," International Journal of Pharmaceutics, vol. 57, pp. 241-251, 1989.
(92) L. Paasonen, T. Laaksonen, C. Johans, M. Yliperttula, K. Kontturi, and A. Urth, "Gold nanoparticles enable selective light-induced contents release from liposomes," Journal of Controlled Release, vol. 122, pp. 86-93, 2007.
(93) D. G. Fatouros, K. Hatzidimitriou, and S. G. Antimisiaris, "Liposomes encapsulating prednisolone and prednisolone-cyclodextrin complxes: comparison of membrane integrity and drug release," European Journal of Pharmaceutical Sciences, vol. 13, pp. 287-296, 2001.
(94) M. Cócera, O. López, L. Coderch, J. L. Parra, and A. de la Maza, "Permeability investigations of phospholipid liposomes by adding cholesterol," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 221, pp. 9-17, 2003.
(95) M. Y. Begum, M. R. Shaik, K. Abbulu, and M. Sudhakar, "Ketorolac tromethamine loaded liposomes of long alkyl chain lipids: Development, characterization and in vitro performance," International Journal of PharmTech Research, vol. 4, pp. 218-225, 2012.
(96) 莊雲婷, "類乙醇體陰陽離子液胞雙層膜之螢光偏極化研究," 國立成功大學化學工程學系碩士論文, 2015.
(97) W. H. Lee, Y. L. Tang, T. C. Chiu, and Y. M. Yang, "Synthesis of ion-pair amphiphiles and calorimetric study on the gel to liquid-crystalline phase transition behavior of their bilayers," Journal of Chemical & Engineering Data, vol. 60, pp. 1119-1125, 2015.
(98) Y.-S. Liu, C.-F. Wen, and Y.-M. Yang, "Cholesterol effects on the vesicular membrane rigidity and drug encapsulation efficiency of ethosome-like catanionic vesicles," Science of Advanced Materials, vol. 6, pp. 954-962, 2014.