| 研究生: |
羅任邦 Lo, Jen-Bang |
|---|---|
| 論文名稱: |
以三維矯正測力系統評估鎳鈦矯正線受溫度變化的影響 Three-dimensional orthodontic force measurement system to evaluate the temperature effect on NiTi wire |
| 指導教授: |
劉佳觀
Liu, Jia-Kuang |
| 共同指導教授: |
張志涵
Chang, Chi-Han |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 口腔醫學研究所 Institute of Oral Medicine |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 鎳鈦合金 、形狀記憶 、超彈性 、矯正線 、力 、力矩 、生物力學 、口內模型 、重建 、錐狀射束電腦斷層掃描 、3D列印 |
| 外文關鍵詞: | Nickel-Titanium, shape memory, superelasticity, orthodontic wires, force, moment, biomechanics, oral model, CBCT, reconstruction, 3D printing |
| 相關次數: | 點閱:153 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
牙齒矯正過程很重要的是我們對牙齒(包含牙冠及牙根)三度空間上面的控制。為了達到理想的位置我們在施加矯正力量過程應考慮到三度空間力量的方向,特別是當矯正線及矯正器施加在牙齒上所產生的力量及力矩應該被清楚的瞭解,否則可能會造成治療失敗、施加過大的力量、牙根吸收或組織壞死等問題。因材料學的進步,鎳鈦矯正線因為其形狀記憶、超彈性被廣泛使用於牙齒矯正上。鎳鈦矯正線的機械性質也受到溫度及壓力改變所造成的相轉變影響。本實驗透過牙科錐狀斷層cone-beam CT 影像資訊並利用軟體(Mimics 10.01, Geometric studio 12 and Solidworks )設計建置立體測力模型,使用3D printer(Up plus 2)輸出後,利用多軸測力儀器Nano17(ATI, USA),可獲得牙齒在三度空間中所受到的力及力矩。進一步於溫控箱中觀察在不同溫度下四種不同.016x.022吋的矯正線(Nitinol, Sentalloy, 27°C CuNiTi, 40°C CuNiTi)透過自鎖式矯正器對牙齒的施力狀況。結果顯示,除了Nitinol外,溫度和牙齒受到的力量呈現高度相關(相關係數Sentalloy=0.964, 27°C CuNiTi=0.918, 40°C CuNiTi=0.946),而且比較這四種鎳鈦矯正線在不同溫度所產生的力量在統計上達顯著差異;力矩的部分與溫度的關係相關性並沒有非常高,Nitinol所展現的力矩最大,40°C CuNiTi最小。結論是矯正線在臨床上會受到溫度的影響,透過三維矯正測力系統評估可更了解矯正線對牙齒施力的影響。
The movement of teeth during orthodontic treatment should be controlled in all three planes of space, including the crown and root position. Force and movement should be accurately known in order to move a tooth into the ideal position and avoid undesirable side effects such as additional visits, overloading, tissue necrosis or even root resorption. Nickel-titanium (NiTi) wires are widely used in orthodontics as they combine the shape memory and superelasticity resulting from phase transformation induced by stress or temperature. In this study, a 3D force measuring system was developed using cone-beam computerized tomography (CBCT) images and software (Mimics 10.01, Geometric studio 12 and Solidworks). The models were fabricated using a 3D printer (Up plus 2). A multi-axis force transducer, called Nano17 (ATI, USA), was used for the 3D orthodontic force and moment measurements. Four different types of NiTi wire (Nitinol, Sentalloy, 27°C CuNiTi, 40°C CuNiTi) with the same size (.016 x .022 inches) were used. Self-ligating brackets (H4, Orthoclassic, USA) were bonded on simulated teeth. The change in orthodontic force and moment can be observed inside temperature controlled box. The results revealed that there was a strong relation between temperature and orthodontic force for most brands of wires, except Nitinol (correlation coefficient: Sentalloy=0.964, 27°C CuNiTi=0.918, 40°C CuNiTi=0.946). Comparison of forces under different temperature among different NiTi wires also reached statistically significant difference. However, the moment and temperature did not show a very strong correlation. Nitinol expressed highest and 40°C CuNiTi expressed lowest moment among four groups. The 3D force measurement system can provide practical information for clinical use.
Badawi, H. M., Toogood, R. W., Carey, J. P., Heo, G.,Major, P. W. Three-dimensional orthodontic force measurements. Am J Orthod Dentofacial Orthop, 136(4), 518-528. 2009.
Barwart, O. The effect of temperature change on, the load value of Japanese NiTi coil springs in the superelastic range. American Journal of Orthodontics and Dentofacial Orthopedics, 110(5), 553-558. 1996.
Berzins, D. W.,Roberts, H. W. Phase transformation changes in thermocycled nickel-titanium orthodontic wires. Dental Materials, 26(7), 666-674. 2010.
Buehler, W. J., Gilfrich, J. V.,Wiley, R. C. Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi. Journal of Applied Physics, 34(5), 1475-1477. 1963.
Burstone, C. J.,Pryputniewicz, R. J. Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod, 77(4), 396-409. 1980.
Burstone, C. J., Pryputniewicz, R. J.,Bowley, W. W. Holographic measurement of tooth mobility in three dimensions. J Periodontal Res, 13(4), 283-294. 1978.
Chopra, I.,Sirohi, J. Smart structures theory (Vol. 35): Cambridge University Press.2013.
Friedrich, D., Rosarius, N., Rau, G.,Diedrich, P. Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy. J Biomech, 32(1), 81-85. 1999.
Friedrich, D., Rosarius, N., Schwindke, P., Rau, G.,Diedrich, P. In vitro testing of a measuring system for in vivo recording of orthodontically applied forces and moments in the multiband technique. Part II. J Orofac Orthop, 59(2), 82-89. 1998.
Fuck, L. M.,Drescher, D. Force systems in the initial phase of orthodontic treatment -- a comparison of different leveling arch wires. J Orofac Orthop, 67(1), 6-18. 2006.
Gil, F. J.,Planell, J. A. Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications. Journal of Biomedical Materials Research, 48(5), 682-688. 1999.
Kusy, R. P. A review of contemporary archwires: their properties and characteristics. Angle Orthod, 67(3), 197-207. 1997.
Lai, W., Midorikawa, Y., Kanno, Z., Takemura, H., Suga, K., Soga, K., Ono, T.,Uo, M. Development and modification of a device for three-dimensional measurement of orthodontic force system: The V-bend system re-visited. Dent Mater J, 35(6), 908-917. 2016.
Lee, D., Heo, G., El-Bialy, T., Carey, J. P., Major, P. W.,Romanyk, D. L. Initial forces experienced by the anterior and posterior teeth during dental-anchored or skeletal-anchored en masse retraction in vitro. Angle Orthod, 87(4), 549-555. 2017.
Lee, Y. H., Lim, B. S., Lee, Y. K., Kim, C. W.,Baek, S. H. Comparison of transition temperature range and phase transformation behavior of nickel-titanium wires. Korean Journal of Orthodontics, 40(1), 40-49. 2010.
Liu, Y. F., Zhang, P. Y., Zhang, Q. F., Zhang, J. X.,Chen, J. Digital design and fabrication of simulation model for measuring orthodontic force. Biomed Mater Eng, 24(6), 2265-2271. 2014.
Mencattelli, M., Donati, E., Cultrone, M.,Stefanini, C. Novel universal system for 3-dimensional orthodontic force-moment measurements and its clinical use. Am J Orthod Dentofacial Orthop, 148(1), 174-183. 2015.
Mencattelli, M., Donati, E., Spinelli, P., Cultrone, M., Luzi, C., Cantarella, D.,Stefanini, C. Measuring 3D-orthodontic actions to guide clinical treatments involving coil springs and miniscrews. Biomed Microdevices, 19(1), 14. 2017.
Naceur, I. B., Charfi, A., Bouraoui, T.,Elleuch, K. Finite element modeling of superelastic nickel-titanium orthodontic wires. J Biomech, 47(15), 3630-3638. 2014.
Otto, B. The effect of temperature change on, the load value of Japanese NiTi coil springs in the superelastic range. American Journal of Orthodontics and Dentofacial Orthopedics, 110(5), 553-558. 1996.
Pun, D. K.,Berzins, D. W. Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel–titanium-based orthodontic wires at various temperatures. Dental Materials, 24(2), 221-227. 2008.
Reitan, K. Clinical and histologic observations on tooth movement during and after orthodontic treatment. American journal of orthodontics, 53(10), 721-745. 1967.
Sakima, M. T., Dalstra, M., Melsen, B. How does temperature influence the properties of rectangular nickel–titanium wires? The European Journal of Orthodontics, 28(3), 282-291. 2006.
Shaw, J. A.,Kyriakides, S. Thermomechanical aspects of NiTi. Journal of the Mechanics and Physics of Solids, 43(8), 1243-1281. 1995.
鄭淑雯. (2012). 探討溫度、應力對於鎳鈦矯正線相變化行為及機械性質的影響. (碩士), 國立成功大學, 台南市.