簡易檢索 / 詳目顯示

研究生: 洪禕辰
Hung, Yi-Cheng
論文名稱: 離岸風機雙鋼管混凝土接頭之有限元素分析
Finite Element Analysis of Concrete-Filled Double Skin Tube Connection for Offshore Wind Turbine
指導教授: 胡宣德
Hu, Hsuan-Teh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 77
中文關鍵詞: 鋼管混凝土轉接頭ABAQUS
外文關鍵詞: Transition piece, Grouted connection, ABAQUS
相關次數: 點閱:116下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋼管混凝土轉接頭(Transition Piece / Grouted Connection)被廣泛應用於離岸工程,如:石油、天然氣及風力發電等重大海事工程,並在結構中扮演重要的傳遞力量之角色,負責將上部結構的自重與載重傳遞至下部基礎。
    本文藉由有限元素軟體ABAQUS輔助模擬鋼管混凝土接頭的力學行為,並針對鋼管內無設置剪力釘的構件型式,在承受軸向力作用的情況下,探討鋼管與混凝土間的機械咬合行為。本文嘗試呈現鋼管因製作工藝而生成之微小尺寸誤差,而使構件獲得的承載能力,再經由與實際實驗數據的比對,驗證分析的可行性。因此由鋼管表面起伏誤差量值之合理範圍內,透過常態分佈之機率模式隨機取值,以及在相同範圍內只取單一代表值等兩種方式,模擬鋼管表面之微觀不平整情形。
    最後由模擬結果提出建議之起伏誤差代表值,以及起伏誤差點的佈設間距,以利未來對於鋼管混凝土轉接頭分析模擬之模型建立。
    並由與實際實驗結果吻合的模型,再進一步探討鋼管混凝土接頭,其混凝土之幾何尺寸變化對構件軸向承載力的影響。

    Finite element analysis of Concrete-filled double skin Connecting tube for offshore wind turbine

    Yi-Cheng Hung
    Hsuan-Teh Hu
    Department of Civil Engineering National Cheng Kung University

    SUMMARY

    Transition piece (Grouted connection) is widely used in offshore engineering, e.g., wind power, oil and gas, and act as an important part to transit the loading from superstructure to foundation.
    In this thesis, I use the finite element analysis software, ABAQUS, to simulate the behavior of grouted connections when subjected loading. The thesis try to show the slightly rise and fall on the surface of steel tube due to produce, which cause the member to gain the loading capacity. For simulate the condition of slightly rise and fall on the surface of steel tube, we arrange some assistant points on the surface of steel tube. The value of assistant points were picked from reasonable range, and picked by normal distribution method or choose only one value as representation.
    Finally verify the feasibility of this simulation by compare the result with the conclusion of experiment, and to propose a representative value to exhibit the roughness of the surface of steel tube.
    At the end of this thesis, further studying the effect on the difference of the length of transition piece.

    Key words : Transition piece, Grouted connection, ABAQUS

    Introduction

    The energy resources in Taiwan is mainly depend on nuclear power and thermal power. Now, Taiwan is going to expand green power, and wind power is one of the green powers be emphasized, it’s expect to reach 12,502MW of total capacity in 2030, including 5MW offshore wind turbines 600 sets and 2.5MW onshore wind turbines 450 sets, and the offshore wind farm is located at Chang-Hua, Yun-Lin and Peng-Hu.

    Materials and methods

    The type of foundations of offshore wind turbine is depend on the condition of the sea which wind farm locate, even though the depth in the Taiwan strait is between 15m ~ 20m, it is well suited to mono-pile foundation, but after consider the weak seabed of Taiwan strait, and offshore construction ability, finally select the Jacket foundation (Group piles) as design.
    This thesis use finite element software, ABAQUS, to simulate the loading behavior of transition piece, we set up the model refer to the scale of reality experiment, and compare the result of simulation with the data of experiment.

    Results and discussion

    The simulation show that if the assistant points distributed to a specific span, and the magnitude of rise and fall is setting in a specific value, then the result of simulation approach the experiment that is done by Peter Schaumann (2010).
    This thesis keep on studying the effect on the difference of the scale of transition piece, and the effect on the difference of the strength of materials. We discuss four different values of length of transition piece (L_G), and four different values of thickness of transition piece (t_G). The result show that the loading capacity of transition piece is direct proportion with the length of transition piece, but the effect of the thickness of transition piece is not that simple, with increased the thickness of transition piece, the loading capacity will raise up first, and fall down after reach a peak value.

    Conclusion

    After testing, we found that if the model set up without assistant points, the transition piece may punching directly when loading comes up, it is almost no loading capacity.
    We think the roughness of the surface of steel tube is the key point to lead to friction, in order to show the behavior of roughness, not only the friction coefficient of material should be set, but also the rise and fall of the surface of steel tube should be simulated.
    After our simulation and compare the result with experiment, the model can approach experiment when the ratio of number of assistant points (N) and length of transition piece (L_G) equal to 0.5, and the rise and fall of the surface of steel tube set to 0.0266 mm.

    目錄 摘要 i 誌謝 v 目錄 vi 圖目錄 ix 表目錄 xi 符號說明 xii 第1章 緒論 1 1.1 台灣離岸風力發電背景 1 1.2 研究動機與目的 3 1.3 文獻回顧 5 1.4 論文架構 7 1.5 研究方法 8 第2章 混凝土與鋼管之材料行為 9 2.1 混凝土的材料特性 9 2.1.1 混凝土單軸行為 9 2.1.2 混凝土雙軸行為 11 2.1.3 混凝土三軸行為 12 2.2 鋼的材料特性 14 2.2.1 鋼之單軸行為 14 2.2.2 鋼之雙軸行為 15 第3章 有限元素分析及降伏準則 16 3.1 ABAQUS – Dynamic Explicit 16 3.2 脆性開裂 (Brittle Cracking) 16 3.2.1 彌散開裂 (Smeared cracking) 16 3.2.2 裂縫偵測 (Crack detection) 17 3.2.3 拉伸軟化 (Tension Softening) 18 3.2.4 開裂後之剪切行為 (Postcracking shear behavior) 19 3.3 混凝土單軸抗拉行為 21 第4章 數值模型之建立與分析 25 4.1 實驗介紹 25 4.1.1 實驗簡介 25 4.2 材料性質之設定 26 4.3 接觸面性質之模擬 27 4.4 模型建立 28 4.4.1 起伏誤差值之代表值計算 34 4.4.2 誤差點之佈設 35 4.4.3 軸對稱分析及網格切割 36 4.4.4 邊界條件 39 4.5 混凝土軸向長度變化之模型 41 4.6 混凝土徑向厚度變化之模型 42 第5章 分析結果 43 5.1 隨機佈點之分析結果 43 5.2 波浪狀均勻佈點分析結果 49 5.3 混凝土長度變化之分析結果 54 5.4 混凝土徑向厚度變化之分析結果 57 5.5 材料強度改變之影響分析 59 5.5.1 模型建立之思路整理 61 第6章 結論 62 6.1 分析方法總結 62 6.2 進階分析結論 64 6.3 建議 65 參考文獻 66 附錄 ABAQUS Input File 68

    參考文獻
    [1] M. S. Andersen , P. Petersen,〝Structural design of Grouted Connection in Offshore Steel Monopole Foundations〞,Global Wind Power,2004。
    [2] W. F. Chen , D. J. Han,〝Plasticity for Structural Engineers〞,GAU LIH BOOK
    CO.,LTD.,1995。
    [3] Nedžad Dedić,〝Analysis of Grouted Connection in Monopile Wind Turbine
    Foundations Subject to Horizontal Load Transfer 〞,Institue of Mechanical
    Engineering Aalborg University,2009。
    [4] Dassault Systèmes Corporation, SIMULIA Abaqus Analysis User’s Manuals, Theory Manuals and Example Problems Manuals,Version 6.14,France,2014。
    [5] IABSE Seminar Copenhagen,〝Developments of Grouted Connections in Monopile Foundations〞,Det Norske Veritas,2010。
    [6] K. D. Kim , Pasin Plodpradit , B. J. Kim,〝Interface Behavior of Grout
    Connection on Monopile Wind Turbine Offshore Structure〞,International
    journal of Steel Structure,2014。
    [7] B. P. Russell , T. Liu , N. A. Fleck , V. S. Deshpande,〝The soft impact of
    composite sandwich beams with a square-honeycomb core〞,International
    Journal of Impact Engineering,2011。
    [8] J. G. Rots , J. Blaauwendraad,〝Crack Model for concrete:Discete or smeared?Fixed,Multi-directional or rotation? 〞,HERON,1989。
    [9] P. Schaumann , Stephan Lochte-Holtgreven , Anne Bechtel,〝Grouted Joints in Monopiles〞,International Ocean and Polar Engineering Conference,2014。
    [10] P. Schaumann , A. Bechtel , Stephan Lochte-Holtgreven,〝Fatigue Design for Prevailing Axially Loaded Grouted Connections of Offshore Wind Turbine Support Structure in Deeper Waters〞,2010。
    [11] P. Schaumann , F. Wilke , Stephan Lochte-Holtgreven,〝Nonlinear
    Structural Dynamics of Offshore Wind Energy Converters with Grouted
    Transition Piece〞。
    [12] C. Zhang , P. Cao , Y. Cao , J. Li,〝Using Finite Element
    Software to Simulation Fracture Behavior of Three-point Bending Beam with
    Initial Crack〞,Journal of software,2013。
    [13] X. L. Zhao , J. Ghojel , P. Grundy , L. H. Han,〝Behavior of grouted sleeve
    connections at elevated temperatures〞,Thin-Walled Structure,2006。
    [14] 千架海陸風力機風力資訊整合平台,http://www.twtpo.org.tw/index.aspx,2015/07。
    [15] 石明隴,「高強度鋼管混凝土柱數值模擬之研究」,國立成功大學土木工程研究所碩士論文,2003。
    [16] 江見鯨、陸新征、葉列平,「混凝土結構有限元分析」,清華大學出版社,2013。
    [17] 林敏郎等,「中空雙鋼管混凝土柱之有限元素分析」,國家地震工程研究中心,2008。
    [18] 胡宣德、黃炯憲,「高強度鋼管混凝土柱數值模擬之研究」。
    [19] 陳世宏,「高強度混凝土三軸壓縮試驗技術與靜動態力學行為」,國立成功大學土木工程研究所碩士論文,2009。
    [20] 陳致良,「鋼管混凝土柱受軸壓與彎矩之行為分析」,國立成功大
    學土木工程研究所碩士論文,2002。
    [21] 張鈴菀,「向量式有限元素分析法於鋼筋混凝土結構非線性行為之應用」,國立中央大學土木工程研究所碩士論文,2009。
    [22] 張嘉興,「鋼管混凝土柱受軸壓及雙向彎矩載重之非線性分析」,
    國立成功大學土木工程研究所碩士論文,2005。
    [23] 康希良、程耀芳、涂昀、薛建阳,「鋼管混凝土黏結-滑移性能試驗研究及數值分析」,2010。
    [24] 楊亞彬、汪志昊,「基于ABAQUS的鋼管混凝土組合剪力牆彈塑性有限元分析」,華北水利水電學院學報,2012。
    [25] 劉季宇等,「受軸壓與彎矩作用之鋼管混凝土構件力學行為研究」,國家地震工程研究中心,2003。
    [26] 蔡世桓,「中空雙鋼管混凝土柱受軸壓及彎矩載重之非線性分析」,國立成功大學土木工程研究所碩士論文,2006。
    [27] 蔡紹懷,「現代鋼管混凝土結構」,人民交通出版社,2003。
    [28] 蔣首超、王震,預應力灌漿套管中初始應力分布理論分析,工程力學,2011。
    [29] 賴昱儒,「混凝土結構分析之三維等效單軸組成材料模型」,國立中央大學土木工程研究所碩士論文,2014。
    [30] 韓林海,「鋼管混凝土結構」,科學出版社,2000。
    [31] 蘇峰堅,「雙鋼管混凝土構件之材料組成律數值研究」,國立成功大學土木工程研究所博士論文,2011。
    [32] 蘇峰堅,「鋼管混凝土柱受純彎矩行為之數值模擬」,國立成功大學土木工程研究所碩士論文,2004。

    下載圖示 校內:2020-08-31公開
    校外:2020-08-31公開
    QR CODE