| 研究生: |
詹大方 Chan, Da-Fang |
|---|---|
| 論文名稱: |
視覺運動關係改變對動作幅度控制的影響 The Effects of Visuomotor Adaptation on the Control of Movement Amplitude |
| 指導教授: |
楊政峰
Yang, Jeng-Feng |
| 共同指導教授: |
黃英修
Hwang, Ing-Shiou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 物理治療學系 Department of Physical Therapy |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 視覺動作關係適應 、動作控制 、動作幅度 |
| 外文關鍵詞: | visuomotor adaptation, motor control, movement amplitude |
| 相關次數: | 點閱:119 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景與目的:本研究探討適應視覺上動作幅度的橫向分量改變是否會影響動作幅度的縱向分量的控制,以及適應視覺上動作幅度的縱向分量改變是否會影響動作幅度的橫向分量的控制,以進一步瞭解動作幅度的橫向與縱向分量是否能被獨立控制。
研究方法:本研究的對象為慣用手為右手的健康年輕人19 名,平均年齡23.6±3.1 歲,按照徵召順序分為兩組,分別適應視覺上動作幅度的橫向分量改變(GH)與動作幅度的縱向分量改變(GV)。受試者在手寫板上執行水平面上的點對點動作,動作距離12 公分,目標方向包括0 度、30 度、60 度和90 度,總共須完成480 個動作。適應過程包括適應前階段、漸進適應期、適應期和後適應期四個階段。在適應前階段時,動作的視覺動作關係同正常環境,在漸進適應期時,動作的橫向或縱向分量的視覺顯示率(視覺上看到的動作幅度/實際動作的動作幅度)會漸漸縮小至0.67,在適應期時視覺顯示率則一直維持在0.67,後適應期則同適應前階段。本實驗紀錄頭戴式顯示器和手寫板上的軌跡資料,分析參數包括動作固定誤差、適應速率和動作增加率。
研究結果:在適應期時,兩組受試者都能適應橫軸或縱軸視覺動作關係的縮小而放大動作幅度,在後適應期時,兩組都有產生明顯的固定誤差(GH:F1,8= 45.985,p<0.01;GV:F1,9=22.993,p<0.01),但組間沒有顯著的差異(p= 0.811)。就動作增加率而言,在適應期動作幅度的橫向分量與縱向分量呈現明顯的差異(GH:F1,8=5382.709,p<0.01;GV:F1,9=1648.702,
p<0.01),適應視覺上動作幅度在橫向分量改變的受試者表現出橫向分量的改變但縱向分量不變,適應縱向分量改變的受試者則表現出縱向分量的改變但橫向分量不變。在後適應期,兩組的動作誤差在動作幅度橫向分量與縱向分量之間也呈現明顯的差異(GH:F1,8=46.059,p<0.01;GV: F1,9= 54.995,p<0.01),適應視覺上動作幅度在橫向分量改變的受試者表現出動作幅度在橫向分量的固定誤差相對於適應期時明顯增加,但縱向分量的固定誤差則沒有顯著的改變,適應視覺上動作幅度的縱向分量改變的受試者其動作幅度分量的固定誤差則是縱向分量有明顯改變但橫向分量則沒有明顯改變。此外,比較兩組在後適應期時的適應速率並沒有明顯的差異(p=0.838)。
結論:本研究結果顯示適應視覺上動作幅度的橫向分量改變,並不會影響動作幅度的縱向分量的控制,同樣的適應視覺上動作幅度的縱向分量改變,並不會影響動作幅度的橫向分量的控制。以上結果表示動作幅度的橫向與縱向分量可以被獨立控制。
Background and purposes: The aims of this study were to determine (1) whether the control of vertical component of the movement amplitude would be affected after adapting
to the change of visuomotor relationship in the horizontal component of the movement amplitude; and (2) whether the control of horizontal component of the movement amplitude would be affected after adapting to the change of visuomotor relationship in the vertical component of the movement amplitude. We expected to gain insight into the
question if the horizontal and vertical component in a planar movement could be control independently.
Methods: Nineteen right-handed healthy young adults were recruited and assigned to one of the following two groups: (1) adapting to the horizontal visual display gain change, and (2) adapting to the vertical visual display gain change. The task was to make a horizontal reaching movement to point to a target. The targets were located along 0°, 30°, 60° and 90° with respect to the horizontal axis. A total number of trials were 480 for 4 separate adaptation phases: pre-adaption phase, adjust-adaptation phase, adaption phase and post-adaption phase. During pre-adaptation phase, the visual display gain was 1. During adjust-adaptation phase, the visual display gain of movement’s horizontal or vertical component was decreased gradually from 1 to 0.67 and then remained as 0.67 for
the entire adaptation phase. The visual display gain in the post-adaptation phase was changed back to 1, same as in the pre-adaptation phase. The constant error, adaptation rate,
and movement amplitude gain was calculated from the recorded movement trajectory.
Results: During adaptation, the subjects of both groups showed adaptation to the gradually decreased visual display gain by enlarging the hand movement amplitude. Therefore, a
significant increase in constant error appeared at early post-adaptation phase compared to that at the pre-adaptation phase (GH: F1,8=45.985, p<0.01; GV: F1,9=22.993, p<0.01). However, no significant group difference was found (p=0.811). The horizontal component and vertical component of movement amplitude gain was significantly different during adaptation (GH: F1,8=5382.709, p<0.01; GV: F1,9= 1648.702, p<0.01). In the group adapting to the horizontal visual display gain changes, the horizontal component of movement amplitude gain changed significantly but the vertical component did not. In the group adapting to the vertical visual display gain change, the vertical component of movement amplitude gain changed significantly but the horizontal component of movement amplitude gain did not. During post-adaptation phase, both groups showed the significant difference between horizontal and vertical component of constant error (GH:F1,8=46.059,p<0.01;GV:F1,9=54.995,p<0.01). The group adapting to the horizontal visual display gain change showed a significant larger horizontal component of constant error relative to at the adaptation phase but the vertical component did not. In the group adapting to the vertical visual display gain change, the vertical component of constant error was significant larger at the post-adaptation phase compared to at the adaptation phase but the horizontal component did not. In terms of adaptation rate, the two groups had no significant difference at early stage of post-adaptation phas(p=0.838).
Conclusion: The results showed that adaptation to the horizontal display gain change did not affect the control of
vertical component of movement amplitude and adaptation to the vertical display gain change did not affect the control of the horizontal component of movement amplitude.
Abeele S, Bock O (2001a) Mechanisms for sensorimotor
adaptation to rotated visual input. Exp Brain Res 139:
248-253
Abeele S, Bock O (2001b) Sensorimotor adaptation to rotated
visual input: different mechanisms for small versus large
rotations. Exp Brain Res 140: 407-410
Buch ER, Young S, Contreras-Vidal JL (2003) Visuomotor
adaptation in normal aging. Learning & Memory 10: 55-63
Caselli P, Conforto S, Schmid M, Accornero N, D'Alessio T
(2006)Difference in sensorimotor adaptation to horizontal
and vertical mirror distortions during ballistic arm
movements. Hum Mov Sci 25: 310-325
Contreras-Vidal JL, Teulings HL, Stelmach GE, Adler CH
(2002)Adaptation to changes in vertical display gain
during handwriting in Parkinson's disease patients,
elderly and young controls. Parkinsonism Relat Disord 9:
77-84
Ferrel C, Leifflen D, Orliaguet JP, Coello Y (2000)Pointing
movement visually controlled through a video display:
adaptation to scale change. Ergonomics 43: 461-473
Hegele M, Heuer H (2008) Adaptation to a direction-
dependent visuomotor gain in the young and elderly.
Psychol Res 74: 21-34
Heuer H, Hegele M (2008a) Adaptation to a nonlinear
visuomotor amplitude transformation with continuous and
terminal visual feedback. J Mot Behav 40: 368-379
Heuer H, Hegele M (2008b) Adaptation to direction-dependent
visuo-motor rotations and its decay in younger and older
adults. Acta Psychol (Amst) 127: 369-381
Heuer H, Hegele M (2008c) Adaptation to visuomotor
rotations in younger and older adults. Psychol Aging 23:
190-202
Heuer H, Hegele M (2008d) Constraints on visuo-motor
adaptation depend on the type of visual feedback during
practice. Exp Brain Res 185: 101-110
Hinder MR, Tresilian JR, Riek S, Carson RG (2008) The
contribution of visual feedback to visuomotor adaptation:
how much and when? Brain Res 1197: 123-134
Krakauer JW, Pine ZM, Ghilardi MF, Ghez C (2000) Learning
of visuomotor transformations for vectorial planning of
reaching trajectories. J Neurosci 20: 8916-8924
Oldfield RC (1971) The assessment and analysis of
handedness: the Edinburgh inventory. Neuropsychologia 9:
97-113
Pennel I, Coello Y, Orliaguet JP (2002) Frame of reference
and adaptation to directional bias in a video-controlled
reaching task. Ergonomics 45: 1047-1077
Seidler RD, Bloomberg JJ, Stelmach GE (2001) Context-
dependent arm pointing adaptation. Behav Brain Res 119:
155-166
Teulings HL, Contreras-Vidal JL, Stelmach GE, Adler CH
(2002) Adaptation of handwriting size under distorted
visual feedback in patients with Parkinson's disease and
elderly and young controls. J Neurol Neurosurg Psychiatry
72: 315-324
van Doorn RRA, Unema PJA, Hendriks EJ (2005) The locus of
adaptation to altered gain in aimed movements. Hum Mov
Sci 24: 31-53
Van Erp JB, Oving AB (2002) Control performance with three
translational degrees of freedom. Hum Factors 44: 144-155
Vindras P, Desmurget M, Viviani P (2005) Error parsing in
visuomotor pointing reveals independent processing of
amplitude and direction. J Neurophysiol 94: 1212-1224
Vindras P, Viviani P (1998) Frames of reference and control
parameters in visuomanual pointing. J Exp Psychol Hum
Percept Perform 24: 569-591
Vindras P, Viviani P (2002) Altering the visuomotor gain.
Evidence that motor plans deal with vector quantities.
Exp Brain Res 147: 280-295
Zhai S, Milgram P, Rastogi A (1997) Anisotropic human
performance in six degree- of-freedom tracking: an
evaluation of three-dimensional display and control
interfaces. Ieee Transactions on Systems Man and
Cybernetics Part a-Systems and Humans 27: 518 - 528