簡易檢索 / 詳目顯示

研究生: 謝宛霖
Xie, Wan-Lin
論文名稱: 以光散射法分析電紡聚(異丙基丙烯醯胺)/聚乙烯醇混摻水溶液之泰勒錐與液柱內部微結構
Analysis of Taylor cone and electrospinning jet microstructure of poly(N-isopropyl acrylamide)/polyvinyl alcohol blend aqueous solution by light scattering
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 160
中文關鍵詞: 光散射電紡絲聚(異丙基丙烯醯胺)聚乙烯醇相分離
外文關鍵詞: light scattering, electrospinning, poly(N-isopropyl acrylamide), polyvinyl alcohol, phase separation
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以光散射實驗分析電紡絲液柱與內部微結構,藉聚乙烯醇與聚(異丙基丙烯醯胺)之混摻水溶液作為研究主體,此混摻水溶液在室溫時有相分離domain,藉由升降溫只能觀察到在15 oC時相分離domain邊界隨溫度改變而漸不明顯,推測是因為polymer rich與polymer poor兩區域的折射率差異很小。因此將藉由光散射來量測溶液於不同溫度下之光散射強度分布,並選擇以光散射強度最弱的15 oC進行後續研究。

    藉雷射打擊不同之9 wt% PNIPAM/PVA混摻組成水溶液,以相同的操作參數觀察雷射打擊在穩定電紡之距離針底不同位置泰勒錐之散射圖案變化;而有關電紡液柱,將以沿著赤道方向掃描距離針底不同距離之散射圖案,將所得強度分佈中亮峰的位置,以Mie theory模擬出的強度分布做擬合,得到電紡混摻組成20/80有dj(z)~z-1.51關係;當固定雷射打擊距離針底相同泰勒錐之位置,藉改變操作電壓觀察泰勒錐與散射圖案之變化。

    最後以乾玻片與液態氮收集電紡液柱,藉由OM與SEM觀察原先具相分離的溶液經電紡拉伸作用後,液柱表面或內部會存在顆粒狀與線狀微結構形態,呼應相分離domain經由電紡過程中的拉伸作用產生微結構的推測。

    In this study, the electrospinning jet and internal microstructures were analyzed by light scattering experiments. The aqueous solution of PVA and PNIPAM was used for the study.
    At room temperature, phase separation domains in the blend solution, and it might not be possible to find the region of one phase by changing the temperature. Therefore, light scattering was utilized to measure the intensity distribution of the solutions at different temperatures, the result indicate that the light scattering intensity is the weakest at 15 °C for subsequent investigations.

    He-Ne laser showed on Taylor cone and electrospinning jet of different weight ratios 9 wt% PNIPAM/PVA blend aqueous solutions, and the scattering pattern which is at different distances from the needle end on the screen behind the jet were scanned alone the equator direction to obtain the intensity profile.Fit the position of the peak in the intensity profile with the profile simulated by Mie theory to find the jet diameter profile dj(z). The relationship of the weight ratio 20/80 can be shown as dj(z) ~ z-1.51.

    Final, we collected the electrospinning jet with slides and liquid nitrogen, and observed internal microstructures with OM and SEM. The internal microstructures of electrospinning jet are presumed to be generated by the stretching effect of the electrospinning.

    摘要 i Extended Abstract ii 目錄 xiii 表目錄 xvi 圖目錄 xvii 符號 xxii 一、前言 1 二、簡介 2 2.1 電紡絲之模式(modes of electrospinning) 2 2.1.1 dripping mode 2 2.1.2 pulsating mode 3 2.1.3 cone-jet mode 3 2.1.4 multi-jet mode 3 2.2 以light scattering量測液柱大小 3 2.3 電紡絲實驗之觀察 4 2.3.1 泰勒錐與液柱形態 4 2.3.2產物形態 4 三、文獻回顧 6 3.1 聚乙烯醇 (polyvinyl alcohol, PVA) 6 3.1.1 聚乙烯醇之簡介 6 3.1.2聚乙烯醇之電紡絲 7 3.2 聚異丙基丙烯醯胺 (poly(N-isopropyl acrylamide), PNIPAM) 9 3.2.1 聚異丙基丙烯醯胺之簡介 9 3.2.2聚異丙基丙烯醯胺之電紡絲 10 3.3 高分子混摻溶液 12 3.3.1高分子混摻溶液之簡介 12 3.3.2高分子混摻溶液在shear flow下的相分離溶液行為 12 3.3.3高分子混摻溶液之電紡絲 14 3.4 以雷射光散射實驗分析電紡絲液柱行為 16 3.4.1 Mie散射理論 19 3.4.2液柱內兩種微結構之理論 21 13.4.2.1 RGB微結構理論散射強度分布 21 13.4.2.2 DB微結構理論散射強度分布 21 3.5 電紡絲產物收集 24 四、實驗 55 4.1 實驗藥品 55 4.2 實驗器材與儀器 55 4.2.1電紡絲溶液配置 55 4.2.2小角度光散射實驗 56 4.2.3電紡絲儀器 57 4.2.4 light scattering 57 4.2.5電紡液柱收集實驗 59 4.2.6分析儀器 60 4.3 電紡絲溶液製備 60 4.3.1 PVA水溶液製備 60 4.3.2 PNIPAM水溶液製備 60 4.3.3 9wt% PNIPAM/PVA混摻水溶液製備 61 4.4 實驗步驟 61 4.4.1電紡溶液性質 61 4.4.1.1溶液相分離觀察 61 4.4.1.2溶液之SALS實驗 61 4.4.2電紡絲實驗 62 4.4.2.1光散射實驗步驟與分析方法 63 4.4.2.2觀察超過黃幕之散射圖案 64 4.4.3收集電紡絲液柱 64 4.4.3.1 以乾玻片收集液柱 65 4.4.3.2 以液態氮收集液柱 65 五、結果與討論 73 5.1 電紡溶液性質 73 5.1.1電紡溶液相變化觀察 73 5.1.2電紡溶液之SALS結果 73 5.2 電紡不同9 wt% PNIPAM/PVA混摻組成水溶液 74 5.2.1 Taylor cone形態與cone height (Hc)測量 74 5.2.2雷射散射分析電紡絲行為 74 5.2.2.1電紡9 wt% PNIPAM/PVA (20/80)混摻水溶液 75 5.2.2.2電紡9 wt% PNIPAM/PVA(80/20)混摻水溶液 78 5.3電紡液柱形態觀察 80 5.3.1以乾玻片收集電紡液柱 80 5.3.2以液態氮收集電紡液柱 80 5.4電紡纖維形態 81 5.5以Mie理論散射強度分布對液柱散射的第一散射峰擬合以找出液柱半徑 81 六、結論 115 七、參考文獻 116 八、附錄 122

    [1] H. Itoh, Y. Li, K. H. K. Chan, M. Kotaki, “Morphology and mechanical properties of PVA nanofibers spun by free surface electrospinning”, Polymer Bulletin 73, 2761 (2016).
    [2] E. Marin, J. Rojas, Y. Ciro, “A review of polyvinyl alcohol derivatives: promising materials for pharmaceutical and biomedical applications”, African J Pharm Pharmacol 8, 674 (2014).
    [3] N. B. Halima, “ Poly (vinyl alcohol): review of its promising applications and insights into biodegradation” , RSC Advances 6, 39823 (2016).
    [4] B. Briscoe, P. Luckham, S. Zhu, “The effects of hydrogen bonding upon the viscosity of aqueous poly (vinyl alcohol) solutions” , Polymer 41, 3851 (2000).
    [5] M. Komatsu, T. Inoue, K. Miyasaka, “Light-scattering studies on the sol-gel transition in aqueous solution of poly(vinyl alcohol)” , Journal of Polymer Science 24, 303 (1986).
    [6] N. Tucker, J. J Stanger, M. P. Staiger, H. Razzaq, K. Hofman, “The history of the science and technology of electrospinning from 1600 to 1995”, Journal of Engineered Fibers and Fabrics 7, 63 (2012).
    [7] G. I. Taylor, “Electrically driven jets”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 313, 453 (1969).
    [8] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, Journal of Applied Physics 87, 4531 (2000).
    [9] D. H. Reneker, A. L. Yarin, “Electrospinning jets and polymer nanofibers”, Polymer 49, 2387 (2008).
    [10] C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, “Study on morphology of electrospun poly (vinyl alcohol) mats” , European Polymer Journal 41, 423 (2005).
    [11] L. Yao, T. W. Haas, A. Guiseppi-Elie, G. L. Bowlin, D. G. Simpson, G. E. Wnek, “Electrospinning and stabilization of fully hydrolyzed poly (vinyl alcohol) fibers” , Chemistry of Materials 15, 1860 (2003).
    [12] J. Zhao, Z. Sun, Z. Shao, L. Xu, “Effect of surface active angent on morphology and properties of electrospun PVA nanofibers.”, Fiber and Polymer 17, 896 (2016).
    [13] E. Hosseini-Alvand, M. T. Khorasani, “Fabrication of electrospun nanofibrous thermoresponsive semi-interpenetrating poly (N-isopropylacrylamide)/polyvinyl alcohol networks containing ZnO nanoparticle mats: Characterization and antibacterial and cytocompatibility evaluation”, Journal of Materials Chemistry B 11, 890 (2023).
    [14] Y. C. Chuang, Y. C Chang, M. T. Tsai, T. W. Yang, M. T. Huang, S. H. Wu, C. Wang, “Electrospinning of Aqueous Solutions of Atactic Poly (N-isopropylacrylamide) with Physical Gelation”, Gels 8, 716 (2022).
    [15] R. H. Pelton, K. C. Tam, X. Y. Wu, “Viscometry-a useful tool for studying conformational changes of poly(N-isopropylacrylamide) in solutions”, Polymer 33, 436 (1992).
    [16] A. S. Dubovik, N. V. Grinberg, V. Y. Grinberg, “Energetics of phase separation in aqueous solutions of poly(N-isopropylacrylamide)”, Polymer Science Series A 52, 565 (2010).
    [17] Y. Ono, T. Shikata, “Hydration and dynamic behavior of poly (N-isopropylacrylamide) s in aqueous solution: a sharp phase transition at the lower critical solution temperature” , Journal of the American Chemical Society 128, 10030 (2006).
    [18] A. V. Semakov, V. G. Kulichikhin, A. K. Tereshin, S. V. Antonov, A. Y. Malkin, “On the nature of phase separation of polymer solutions at high extension rates” , Journal of Polymer Science Part B: Polymer Physics 53, 559 (2015).
    [19] D. N. Rockwood, D. B. Chase, R. E. Akins Jr, J. F. Rabolt, “Characterization of electrospun poly (N-isopropyl acrylamide) fibers” , Polymer 49, 4025 (2008).
    [20] A. Holzmeister, A. L. Yarin, J. H. Wendorff, “Barb formation in electrospinning: Experimental and theoretical investigations” , Polymer 51, 2769 (2010).
    [21] S. Y. Gu, Z. M. Wang, J. B. Li, J. Ren, “Switchable wettability of thermo‐responsive biocompatible nanofibrous films created by electrospinning” , Macromolecular Materials and Engineering 295, 32 (2010).
    [22] M. Peng, D. Li, L. Shen, Y. Chen, Q. Zheng, H. Wang, “Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends’’ , Langmuir 22, 9368 (2006).
    [23] A. V. Bazilevsky, A. L. Yarin, C. M. Megaridis, “Co-electrospinning of core− shell fibers using a single-nozzle technique’’ , Langmuir 23, 2311 (2007).
    [24] T. Takebe, K. Fujioka, R. Sawaoka, “Self‐assembled structure of a semidilute solution of polymer mixtures under shear flow’’ , The Journal of Chemical Physics 93, 5271 (1990).
    [25] E. K. Hobbie, S. Kim, C. C. Han, “Stringlike patterns in critical polymer mixtures under steady shear flow’’ , Physical Review E, 54, 6 (1996).
    [26] C. L. Tucker III, P. Moldenaers, “Microstructural evolution in polymer blends’’ , Annual Review of Fluid Mechanics 34, 177 (2002).
    [27] T. D. Nguyen, S. Roh, M. T. N. Nguyen, J. S. Lee, “Structural control of nanofibers according to electrospinning process conditions and their applications’’ , Micromachines 14, 2022 (2023).
    [28] M. Wei, B. Kang, C. Sung, J. Mead, “Core‐sheath structure in electrospun nanofibers from polymer blends’’ , Macromolecular Materials and Engineering 291, 1307 (2006).
    [29] M. Bognitzki, T. Frese, M. Steinhart, A. Greiner, J. H. Wendorff, A. Schaper, M. Hellwig, “ Preparation of fibers with nanoscaled morphologies: Electrospinning of polymer blends’’ , Polymer Engineering & Science 41, 982 (2001).
    [30] A. V. Bazilevsky, A. L. Yarin, C. M. Megaridis, “Co-electrospinning of core − shell fibers using a single-nozzle technique’’ , Langmuir 23, 2311 (2007).
    [31] Y. Z. Zhang, Y. Feng, Z. M. Huang, S. Ramakrishna, C. T. Lim, “Fabrication of porous electrospun nanofibres’’ , Nanotechnology 17, 901 (2006).
    [32] H. Y. Jian, S. V. Fridrikh, G. C. Rutledge, “The role of elasticity in the formation of electrospun fibers’’ , Polymer 47, 4789 (2006).
    [33] M. E. Helgeson, K. N. Grammatikos, J. M. Deitzel, N. J. Wagner, “Theory and kinematic measurements of the mechanics of stable electrospun polymer jets’’ , Polymer 49, 2924 (2008).
    [34] J. Doshi, D. H. Reneker, “Electrospinning process and applications of electrospun fibers’’ , Journal of Electrostatics 35, 151 (1995).
    [35] Y. Wang, T. Hashimoto, C. C. Li, Y. C. Li, C. Wang, “Extension rate of the straight jet in electrospinning of poly (N‐isopropyl acrylamide) solutions in dimethylformamide: Influences of flow rate and applied voltage’’ , Journal of Polymer Science Part B: Polymer Physics 56, 319 (2018).
    [36] Y. Uemura, M. Fujimura, T. Hashimoto, H. Kawai, “Application of light scattering from dielectric cylinder based upon mie and Rayleigh-gans-born theories to polymer systems. i. scattering from a glass fiber’’ , Journal of Materials Processing Technology 10, 341 (1978).
    [37] Y. Sun, S. Cheng, W. Lu, Y. Wang, P. Zhang, Q. Yao, “Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization’’ , RSC Advances 9, 25712 (2019).
    [38] C. Wang, T. Hashimoto, “A scenario of a fiber formation mechanism in electrospinning: Jet evolves assemblies of phase-separated strings that eventually split into as-spun fibers observed on the grounded collector’’ , Macromolecules 53, 9584 (2020).
    [39] G. J. Chen, H. Y. Lai, P. H. Lu, Y. C. Chang, C. Wang, “Light Scattering of Electrospinning Jet with Internal Structures by Flow‐Induced Phase Separation’’ , Macromolecular Rapid Communications 44,1 (2023).
    [40] V. G. Kulichikhin, A. Y. Malkin, A. V. Semakov, I. Y. Skvortsov, A. Arinstein, “Liquid filament instability due to stretch-induced phase separation in polymer solutions’’ , The European Physical Journal E 37, 1 (2014).
    [41] 江奐賢, “電紡聚(異丙基丙烯醯胺)/聚乳酸混摻二甲基甲醯胺溶液” , 國立成功大學碩士論文 (2015).
    [42] 廖奕棋, “以光散射法分析電紡聚(異丙基丙烯醯胺)/聚乙烯醇混掺水溶液之液柱及內部微結構” , 國立成功大學碩士論文 (2022).
    [43] W. Li, L. Shi, K. Zhou, X. Zhang, I. Ullah, H. Ou, T. Wu, “Facile fabrication of porous polymer fibers via cryogenic electrospinning system” , Journal of Materials Processing Technology 266, 551 (2019).
    [44] J. T. McCann, M. Marquez, Y. Xia, “Highly porous fibers by electrospinning into a cryogenic liquid” , Journal of the American Chemical Society 128, 1436 (2006).
    [45] J. Xue, T. Wu, Y. Dai, Y. Xia, “Electrospinning and electrospun nanofibers: Methods, materials, and applications” , Chemical Reviews 119, 5298 (2019).
    [46] 陳冠傑, “電紡聚(異丙基丙烯醯胺)/聚乙烯醇混掺水溶液” , 國立成功大學碩士論文 (2015).
    [47] P. Kujawa, H. Watanabe, F. Tanaka, F. M. Winnik, “Amphiphilic telechelic poly (N-isopropylacrylamide) in water: From micelles to gels” , The European Physical Journal E 17, 129 (2005).
    [48] S. Luo, J. Xu, Z. Zhu, C. Wu, S. Liu, “Phase transition behavior of unimolecular micelles with thermoresponsive poly (N-isopropylacrylamide) coronas” , The Journal of Physical Chemistry B 110, 9132 (2006).
    [49] P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density” , Journal of Physical and Chemical 19, 677 (1990).

    無法下載圖示 校內:2029-08-22公開
    校外:2029-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE