| 研究生: |
謝宛霖 Xie, Wan-Lin |
|---|---|
| 論文名稱: |
以光散射法分析電紡聚(異丙基丙烯醯胺)/聚乙烯醇混摻水溶液之泰勒錐與液柱內部微結構 Analysis of Taylor cone and electrospinning jet microstructure of poly(N-isopropyl acrylamide)/polyvinyl alcohol blend aqueous solution by light scattering |
| 指導教授: |
王紀
Wang, Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 160 |
| 中文關鍵詞: | 光散射 、電紡絲 、聚(異丙基丙烯醯胺) 、聚乙烯醇 、相分離 |
| 外文關鍵詞: | light scattering, electrospinning, poly(N-isopropyl acrylamide), polyvinyl alcohol, phase separation |
| 相關次數: | 點閱:45 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以光散射實驗分析電紡絲液柱與內部微結構,藉聚乙烯醇與聚(異丙基丙烯醯胺)之混摻水溶液作為研究主體,此混摻水溶液在室溫時有相分離domain,藉由升降溫只能觀察到在15 oC時相分離domain邊界隨溫度改變而漸不明顯,推測是因為polymer rich與polymer poor兩區域的折射率差異很小。因此將藉由光散射來量測溶液於不同溫度下之光散射強度分布,並選擇以光散射強度最弱的15 oC進行後續研究。
藉雷射打擊不同之9 wt% PNIPAM/PVA混摻組成水溶液,以相同的操作參數觀察雷射打擊在穩定電紡之距離針底不同位置泰勒錐之散射圖案變化;而有關電紡液柱,將以沿著赤道方向掃描距離針底不同距離之散射圖案,將所得強度分佈中亮峰的位置,以Mie theory模擬出的強度分布做擬合,得到電紡混摻組成20/80有dj(z)~z-1.51關係;當固定雷射打擊距離針底相同泰勒錐之位置,藉改變操作電壓觀察泰勒錐與散射圖案之變化。
最後以乾玻片與液態氮收集電紡液柱,藉由OM與SEM觀察原先具相分離的溶液經電紡拉伸作用後,液柱表面或內部會存在顆粒狀與線狀微結構形態,呼應相分離domain經由電紡過程中的拉伸作用產生微結構的推測。
In this study, the electrospinning jet and internal microstructures were analyzed by light scattering experiments. The aqueous solution of PVA and PNIPAM was used for the study.
At room temperature, phase separation domains in the blend solution, and it might not be possible to find the region of one phase by changing the temperature. Therefore, light scattering was utilized to measure the intensity distribution of the solutions at different temperatures, the result indicate that the light scattering intensity is the weakest at 15 °C for subsequent investigations.
He-Ne laser showed on Taylor cone and electrospinning jet of different weight ratios 9 wt% PNIPAM/PVA blend aqueous solutions, and the scattering pattern which is at different distances from the needle end on the screen behind the jet were scanned alone the equator direction to obtain the intensity profile.Fit the position of the peak in the intensity profile with the profile simulated by Mie theory to find the jet diameter profile dj(z). The relationship of the weight ratio 20/80 can be shown as dj(z) ~ z-1.51.
Final, we collected the electrospinning jet with slides and liquid nitrogen, and observed internal microstructures with OM and SEM. The internal microstructures of electrospinning jet are presumed to be generated by the stretching effect of the electrospinning.
[1] H. Itoh, Y. Li, K. H. K. Chan, M. Kotaki, “Morphology and mechanical properties of PVA nanofibers spun by free surface electrospinning”, Polymer Bulletin 73, 2761 (2016).
[2] E. Marin, J. Rojas, Y. Ciro, “A review of polyvinyl alcohol derivatives: promising materials for pharmaceutical and biomedical applications”, African J Pharm Pharmacol 8, 674 (2014).
[3] N. B. Halima, “ Poly (vinyl alcohol): review of its promising applications and insights into biodegradation” , RSC Advances 6, 39823 (2016).
[4] B. Briscoe, P. Luckham, S. Zhu, “The effects of hydrogen bonding upon the viscosity of aqueous poly (vinyl alcohol) solutions” , Polymer 41, 3851 (2000).
[5] M. Komatsu, T. Inoue, K. Miyasaka, “Light-scattering studies on the sol-gel transition in aqueous solution of poly(vinyl alcohol)” , Journal of Polymer Science 24, 303 (1986).
[6] N. Tucker, J. J Stanger, M. P. Staiger, H. Razzaq, K. Hofman, “The history of the science and technology of electrospinning from 1600 to 1995”, Journal of Engineered Fibers and Fabrics 7, 63 (2012).
[7] G. I. Taylor, “Electrically driven jets”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 313, 453 (1969).
[8] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, Journal of Applied Physics 87, 4531 (2000).
[9] D. H. Reneker, A. L. Yarin, “Electrospinning jets and polymer nanofibers”, Polymer 49, 2387 (2008).
[10] C. Zhang, X. Yuan, L. Wu, Y. Han, J. Sheng, “Study on morphology of electrospun poly (vinyl alcohol) mats” , European Polymer Journal 41, 423 (2005).
[11] L. Yao, T. W. Haas, A. Guiseppi-Elie, G. L. Bowlin, D. G. Simpson, G. E. Wnek, “Electrospinning and stabilization of fully hydrolyzed poly (vinyl alcohol) fibers” , Chemistry of Materials 15, 1860 (2003).
[12] J. Zhao, Z. Sun, Z. Shao, L. Xu, “Effect of surface active angent on morphology and properties of electrospun PVA nanofibers.”, Fiber and Polymer 17, 896 (2016).
[13] E. Hosseini-Alvand, M. T. Khorasani, “Fabrication of electrospun nanofibrous thermoresponsive semi-interpenetrating poly (N-isopropylacrylamide)/polyvinyl alcohol networks containing ZnO nanoparticle mats: Characterization and antibacterial and cytocompatibility evaluation”, Journal of Materials Chemistry B 11, 890 (2023).
[14] Y. C. Chuang, Y. C Chang, M. T. Tsai, T. W. Yang, M. T. Huang, S. H. Wu, C. Wang, “Electrospinning of Aqueous Solutions of Atactic Poly (N-isopropylacrylamide) with Physical Gelation”, Gels 8, 716 (2022).
[15] R. H. Pelton, K. C. Tam, X. Y. Wu, “Viscometry-a useful tool for studying conformational changes of poly(N-isopropylacrylamide) in solutions”, Polymer 33, 436 (1992).
[16] A. S. Dubovik, N. V. Grinberg, V. Y. Grinberg, “Energetics of phase separation in aqueous solutions of poly(N-isopropylacrylamide)”, Polymer Science Series A 52, 565 (2010).
[17] Y. Ono, T. Shikata, “Hydration and dynamic behavior of poly (N-isopropylacrylamide) s in aqueous solution: a sharp phase transition at the lower critical solution temperature” , Journal of the American Chemical Society 128, 10030 (2006).
[18] A. V. Semakov, V. G. Kulichikhin, A. K. Tereshin, S. V. Antonov, A. Y. Malkin, “On the nature of phase separation of polymer solutions at high extension rates” , Journal of Polymer Science Part B: Polymer Physics 53, 559 (2015).
[19] D. N. Rockwood, D. B. Chase, R. E. Akins Jr, J. F. Rabolt, “Characterization of electrospun poly (N-isopropyl acrylamide) fibers” , Polymer 49, 4025 (2008).
[20] A. Holzmeister, A. L. Yarin, J. H. Wendorff, “Barb formation in electrospinning: Experimental and theoretical investigations” , Polymer 51, 2769 (2010).
[21] S. Y. Gu, Z. M. Wang, J. B. Li, J. Ren, “Switchable wettability of thermo‐responsive biocompatible nanofibrous films created by electrospinning” , Macromolecular Materials and Engineering 295, 32 (2010).
[22] M. Peng, D. Li, L. Shen, Y. Chen, Q. Zheng, H. Wang, “Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends’’ , Langmuir 22, 9368 (2006).
[23] A. V. Bazilevsky, A. L. Yarin, C. M. Megaridis, “Co-electrospinning of core− shell fibers using a single-nozzle technique’’ , Langmuir 23, 2311 (2007).
[24] T. Takebe, K. Fujioka, R. Sawaoka, “Self‐assembled structure of a semidilute solution of polymer mixtures under shear flow’’ , The Journal of Chemical Physics 93, 5271 (1990).
[25] E. K. Hobbie, S. Kim, C. C. Han, “Stringlike patterns in critical polymer mixtures under steady shear flow’’ , Physical Review E, 54, 6 (1996).
[26] C. L. Tucker III, P. Moldenaers, “Microstructural evolution in polymer blends’’ , Annual Review of Fluid Mechanics 34, 177 (2002).
[27] T. D. Nguyen, S. Roh, M. T. N. Nguyen, J. S. Lee, “Structural control of nanofibers according to electrospinning process conditions and their applications’’ , Micromachines 14, 2022 (2023).
[28] M. Wei, B. Kang, C. Sung, J. Mead, “Core‐sheath structure in electrospun nanofibers from polymer blends’’ , Macromolecular Materials and Engineering 291, 1307 (2006).
[29] M. Bognitzki, T. Frese, M. Steinhart, A. Greiner, J. H. Wendorff, A. Schaper, M. Hellwig, “ Preparation of fibers with nanoscaled morphologies: Electrospinning of polymer blends’’ , Polymer Engineering & Science 41, 982 (2001).
[30] A. V. Bazilevsky, A. L. Yarin, C. M. Megaridis, “Co-electrospinning of core − shell fibers using a single-nozzle technique’’ , Langmuir 23, 2311 (2007).
[31] Y. Z. Zhang, Y. Feng, Z. M. Huang, S. Ramakrishna, C. T. Lim, “Fabrication of porous electrospun nanofibres’’ , Nanotechnology 17, 901 (2006).
[32] H. Y. Jian, S. V. Fridrikh, G. C. Rutledge, “The role of elasticity in the formation of electrospun fibers’’ , Polymer 47, 4789 (2006).
[33] M. E. Helgeson, K. N. Grammatikos, J. M. Deitzel, N. J. Wagner, “Theory and kinematic measurements of the mechanics of stable electrospun polymer jets’’ , Polymer 49, 2924 (2008).
[34] J. Doshi, D. H. Reneker, “Electrospinning process and applications of electrospun fibers’’ , Journal of Electrostatics 35, 151 (1995).
[35] Y. Wang, T. Hashimoto, C. C. Li, Y. C. Li, C. Wang, “Extension rate of the straight jet in electrospinning of poly (N‐isopropyl acrylamide) solutions in dimethylformamide: Influences of flow rate and applied voltage’’ , Journal of Polymer Science Part B: Polymer Physics 56, 319 (2018).
[36] Y. Uemura, M. Fujimura, T. Hashimoto, H. Kawai, “Application of light scattering from dielectric cylinder based upon mie and Rayleigh-gans-born theories to polymer systems. i. scattering from a glass fiber’’ , Journal of Materials Processing Technology 10, 341 (1978).
[37] Y. Sun, S. Cheng, W. Lu, Y. Wang, P. Zhang, Q. Yao, “Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization’’ , RSC Advances 9, 25712 (2019).
[38] C. Wang, T. Hashimoto, “A scenario of a fiber formation mechanism in electrospinning: Jet evolves assemblies of phase-separated strings that eventually split into as-spun fibers observed on the grounded collector’’ , Macromolecules 53, 9584 (2020).
[39] G. J. Chen, H. Y. Lai, P. H. Lu, Y. C. Chang, C. Wang, “Light Scattering of Electrospinning Jet with Internal Structures by Flow‐Induced Phase Separation’’ , Macromolecular Rapid Communications 44,1 (2023).
[40] V. G. Kulichikhin, A. Y. Malkin, A. V. Semakov, I. Y. Skvortsov, A. Arinstein, “Liquid filament instability due to stretch-induced phase separation in polymer solutions’’ , The European Physical Journal E 37, 1 (2014).
[41] 江奐賢, “電紡聚(異丙基丙烯醯胺)/聚乳酸混摻二甲基甲醯胺溶液” , 國立成功大學碩士論文 (2015).
[42] 廖奕棋, “以光散射法分析電紡聚(異丙基丙烯醯胺)/聚乙烯醇混掺水溶液之液柱及內部微結構” , 國立成功大學碩士論文 (2022).
[43] W. Li, L. Shi, K. Zhou, X. Zhang, I. Ullah, H. Ou, T. Wu, “Facile fabrication of porous polymer fibers via cryogenic electrospinning system” , Journal of Materials Processing Technology 266, 551 (2019).
[44] J. T. McCann, M. Marquez, Y. Xia, “Highly porous fibers by electrospinning into a cryogenic liquid” , Journal of the American Chemical Society 128, 1436 (2006).
[45] J. Xue, T. Wu, Y. Dai, Y. Xia, “Electrospinning and electrospun nanofibers: Methods, materials, and applications” , Chemical Reviews 119, 5298 (2019).
[46] 陳冠傑, “電紡聚(異丙基丙烯醯胺)/聚乙烯醇混掺水溶液” , 國立成功大學碩士論文 (2015).
[47] P. Kujawa, H. Watanabe, F. Tanaka, F. M. Winnik, “Amphiphilic telechelic poly (N-isopropylacrylamide) in water: From micelles to gels” , The European Physical Journal E 17, 129 (2005).
[48] S. Luo, J. Xu, Z. Zhu, C. Wu, S. Liu, “Phase transition behavior of unimolecular micelles with thermoresponsive poly (N-isopropylacrylamide) coronas” , The Journal of Physical Chemistry B 110, 9132 (2006).
[49] P. Schiebener, J. Straub, J. M. H. Levelt Sengers, J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density” , Journal of Physical and Chemical 19, 677 (1990).
校內:2029-08-22公開