簡易檢索 / 詳目顯示

研究生: 杜氏明芳
Phuong, Do Thi Minh
論文名稱: 行動網路中D2D通訊系統中繼站選擇算法之研究
Relay Selection for D2D Communication Systems in Cellular Networks
指導教授: 陳曉華
Chen, Hsiao-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 119
中文關鍵詞: 資料減量設備對設備通訊中繼站選擇
外文關鍵詞: Offloading, D2D, Device-to-device communications, Relay Selection
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今手機及多媒體服務使用者數量的快速成長已導致手機網路的使用流量過度負
    荷,而3GPP制定了資料減量的技術去解決此問題。除此之外,設備對設備通訊也
    被視為是解決流量過載的一個新方法,在手機網路架構下的設備對設備通訊可以有
    效減少無線存取網路及核心網路的負荷。設備對設備通訊通常是指設備間可以不靠
    存取點、基地台及服務提供者就可以自行相互通訊的一種技術。在應用一些特定的
    規則及方法之後,設備對設備通訊可以有效的減少手機網路的負荷及增加頻譜使用
    率。另外,此篇論文亦採用了中繼傳輸的方式去改善設備對設備通訊網路的效能當
    使用者設備之間相距太遠或頻道品質不佳的時候。接著,此篇論文探討了在設備對
    設備通訊網路中的中繼站選擇的議題。最後,此篇論文提出了一個在設備對設備通
    訊網路中的集中式中繼站選擇演算法。

    Nowadays, the explosive development on the number of mobile user and multimedia services
    cause a severe traffic overload problem in the cellular network. Data offloading in
    the Third-Generation Partnership Project (3GPP) is defined as critical scheme to cope with
    this issue. Furthermore, device-to-device (D2D) communications have been considered as a
    new data-offloading solution. The D2D communications underlay cellular networks infrastructure
    reduces the radio access network load and the core network load. Device-to-device
    (D2D) communication commonly refers to a technology that enables devices to communicate
    directly without access points, base stations, and wireless operators. With the application of
    specific rules and strategies, D2D communications decrease the mobile network load and
    increase the spectral efficiency. Moreover, relay assisted transmissions are considered in this
    thesis to efficiently improve the performance of relay assisted D2D communications when
    D2D user equipments (UEs) are too far away from each other or the quality of the D2D channel
    is not good enough for direct communications. Thereafter, the relay selection issues on
    D2D communication in cellular network is studied in this thesis. Finally, a centralized relay
    selection method for relay assisted D2D communication systems is proposed in this thesis.

    摘要vii Abstract ix Acknowledgements xi Table of Contents xiii List of Figures xvii List of Tables xxi List of Abbreviations xxiii List of Symbols xxv Dedication xxvii 1 Introduction 1 2 Basics of D2D Communications Using Relays in Cellular Networks 7 2.1 Basics of D2D Communications . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Resource Management in D2D Communications . . . . . . . . . . . . . . . 11 2.2.1 Interference aware resource allocation . . . . . . . . . . . . . . . . . 11 2.2.2 Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Peer Discovery Techniques in D2D Communications . . . . . . . . . . . . . 14 2.4 D2D Session Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.5 Data Transmission Procedure in D2D Communications . . . . . . . . . . . . 17 2.6 Transmit Power in D2D Communications . . . . . . . . . . . . . . . . . . . 19 2.6.1 Transmit power when sharing cellular uplink resources . . . . . . . . 19 2.6.2 Transmit power when sharing cellular downlink resources . . . . . . 20 xiii Contents 2.7 Limit Interference for D2D Uplink Underlaying Cellular Networks . . . . . . 20 2.8 Cooperative Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8.1 Relaying protocol strategies . . . . . . . . . . . . . . . . . . . . . . 23 2.8.1.1 Amplify-and-forward . . . . . . . . . . . . . . . . . . . . 23 2.8.1.2 Decode-and-forward . . . . . . . . . . . . . . . . . . . . 23 2.8.1.3 Compress-and-forward . . . . . . . . . . . . . . . . . . . 24 3 SINR Based Relay Selecting Algorithm for D2D Communications in Cellular Networks 25 3.1 Some Assumptions for This Work . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Infrastructure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Users Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.5 SINR Computation for Amplify-and-Forward Relay Assisted D2D Communications in Cellular Networks . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.6 SINR Based Relay Selecting Algorithm for D2D Communications in Cellular Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.6.1 SINR based relay selecting algorithm for D2D communications in multiple cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.6.2 SINR based relay selecting algorithm for D2D communications in single cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.7 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.7.1 Average error probability for BPSK . . . . . . . . . . . . . . . . . . 44 3.7.1.1 The use of dedicated resources . . . . . . . . . . . . . . . 47 3.7.1.2 The use of the same resources . . . . . . . . . . . . . . . . 49 3.7.2 Outage probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.7.2.1 The use of dedicated resources . . . . . . . . . . . . . . . 61 3.7.2.2 The use of the same resources . . . . . . . . . . . . . . . . 61 4 Simulation Results 63 4.1 Experimental Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 Simulation Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.1 BER simulation flowchart . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.2 Outage probability simulation flowchart . . . . . . . . . . . . . . . . 68 4.3 Simulation Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . 71 5 Conclusions and Future Works 79 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2 Future Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 xiv Contents References 83 A Impulse Response of Multipath Channel 89 B Gamma Distribution 93 C Distribution of Sum of Independent Gamma Variables 95 D Distribution of Square of a Rayleigh Random Variable 97 E Distribution of Sum of Exponential Random Variables 99 F Distribution of Minimum and Maximum of Dependent Random Variables 101 G Distribution of Ratio of Two Independent Random Variables 103 H Simulation Code in C++ for BER in Case D2D User Uses Dedicated Resource Blocks 105 I Simulation Code in C++ for BER in Case D2D User Uses The Same Resource Blocks 109 J Simulation Code in C++ for Outage Probability in Case D2D User Uses Dedicated Resource Blocks 113 K Simulation Code in C++ for Outage Probability in Case D2D User Uses The Same Resource Blocks 117

    [1] H. Fitzek, M. Katz, and Q. Zhang, ”Cellular Controlled Short-range Communication
    for Cooperative P2P Networking,”Wireless Personal Commun., vol. 48, no. 1, pp. 141-155, Jan. 2008.
    [2] K. Doppler, M. P. Rinne, C. Wijting, C. B. Ribeiro, and K. Hugl, ”Device-to-Device Communication as an Underlay to LTE-advanced Networks,” IEEE Commun. Mag., vol. 47, no. 12, pp. 42-29, Dec. 2009.
    [3] P. Jnis, V. Koivunen, C. Ribeiro, J. Korhonen, K. Doppler, and K. Hugl, ”Interference aware resource allocation for device-to-device radio underlaying cellular networks,” in Proc. IEEE VTC 2009-Spring, pp. 1-5, Apr. 2009.
    [4] K. Doppler, C. H. Yu, C. B. Ribeiro, and P. Jnis, ”Mode Selection for Device-to-Device Communication Underlaying an LTE-advanced Network,” in Proc. IEEE WCNC, pp.
    1-5, Apr. 2010.
    [5] C. H. Yu, K. Doppler, C. Ribeiro, O. Tirkkonen, and K. Hugl, ”Performance Impact of Fading Interference to Device-to-Device Communication Underlaying Cellular Networks,”
    in Proc. IEEE PIMRC, pp. 858-862, Sep. 2009.
    [6] H. Min, W. Seo, J. Lee, S. Park, and D. Hong, ”Reliability Improvement Using Receive Mode Selection in The Device-to-Device Uplink Period Underlaying Cellular Networks,” IEEE Trans. Wireless Commun., vol.10, no.2, pp. 413-418, Feb. 2011.
    [7] H. Min, J. Lee, S. Park, and D. Hong, ”Capacity Enhancement Using an Interference Limited Area for Device-to-Device Uplink Underlaying Cellular Networks,” IEEE
    Trans. Wireless Commun., vol. 10, no. 12, pp. 3995-4000, December 2011.
    [8] Y. Pei and Y.-C. Liang, ”Resource Allocation for Device-to-Device Communication Overlaying Two-way Cellular Networks,” IEEE Trans.Wireless Commun., vol. 12, no. 7, pp. 3611-3621, Jul. 2013.
    [9] C.-H. Yu, K. Doppler, C. B. Ribeiro, and O. Tirkkonen, ”Resource Sharing Optimization for Device-to-Device Communication Underlaying Cellular Networks,” IEEE
    Trans. Wireless Commun., vol. 10, no. 8, pp. 2752-2763, August 2011.
    [10] M. Belleschi, G. Fodor, and A. Abrardo, ”Performance analysis of a distributed resource allocation scheme for D2D communications,” in Proceedings of IEEE GLOBECOM
    Workshops, pp. 358-362, 2011.
    [11] Donghoon Lee, Sung-Il Kim, Jaeyoung Lee, and Jun Heo May 2014., ”Performance of Multihop Decode-and-Forward Relaying assisted Device-to-Device Communication Underlaying Cellular Networksl,” ISITA2012, Honolulu, Hawaii, USA, October 28-31,
    2012.
    [12] Xiran Ma, Rui Yin, Guanding Yu, Zhaoyang Zhang, ”A Distributed Relay Selection Method for Relay Assisted Device-to-Device Communication System,” 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications.
    [13] T. Chen, G. Charbit, and S. Hakola, ”Time Hopping for Device-to-Device Communication in LTE Cellular System,” Proc. IEEE Wireless Commun. and Networking Conf., Apr. 2010, pp. 1-6.
    [14] H. Min et al., ”Reliability Improvement Using Receive Mode Selection in the Device-to-Device Uplink Period Underlaying Cellular Networks,” IEEE Trans. Wireless Commun., vol. 10, no. 2, 2011, pp. 413-18.
    [15] http://www.3gpp.org/Release-12.
    [16] G. Fodor et al., ”Design Aspects of Network Assisted Device-to-Device Communications,”
    IEEE Commun. Mag., vol. 50, no. 3, 2012, pp. 170-77.
    [17] 3GPP TS 36.321 v10.3.0, ”Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) protocol specification,” Sept. 2011.
    [18] 3GPP TS 36.211 v10.3.0, ”Evolved Universal Terrestrial Radio Access (E-UTRA);
    Physical channels and modulation (Release 10),” Sept. 2011.
    [19] 3GPP TS 36.213 v10.3.0, ”Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 10),” Sept. 2011.
    [20] C. Yu et al., ”On the Performance of Device-to-Device Underlay Communication with Simple Power Control,” Proc. IEEE VTC 2009-Spring, Apr. 2009.
    [21] C. Yu et al., ”Power Optimization of Device-to-Device Communication Underlaying Cellular Communication,” Proc. IEEE ICC, June 2009.
    [22] J. Gu et al., ”Dynamic Power Control Mechanism for Interference Coordination of Device-to-Device Communication in Cellular Networks,” Proc. IEEE VTC 2009-Fall, June 2009.
    [23] X. Xiao, X. Tao, and J. Lu, ”A QoS-Aware Power Optimization Scheme in OFDMA Systems with Integrated Device-to-Device (D2D) Communications,” Proc. IEEE VTC
    2011-Fall), Sept. 2011.
    [24] P. Jnis, V. Koivunen, C. Ribeiro, J. Korhonen, K. Doppler, and K. Hugl, ”Interference aware resource allocation for device-to-device radio underlaying cellular networks,” in Proc. IEEE VTC 2009-Spring, pp. 1-5, Apr. 2009.
    [25] Hyunkee Min, Jemin Lee, ”Capacity Enhancement Using an Interference Limited Area for Device-to-Device Uplink Underlaying Cellular Networks,” IEEE Trans. Wireless
    Commun., Vol. 10, No. 12, December 2011.
    [26] I. S. Gradshteyn and I. M. Ryzhik, ”Table of Integrals, Series and Products,” 5th Ed., New York: Academic, 1994.
    [27] JiaJia Liu, Yuichi Kawamoto, Hiroki Nishiyama, Nei Kato, and Naoto Kadowaki, ”Device-to-device communication achieve efficient load balancing in LTE-Advanced networks,”
    IEEE Wireless Commun., April 2014.
    [28] Monowar Hasan, Ekram Hossain, and Dong In Kim, ”Resource allocation under channel uncertainties for relay-aided device-to-device communication underlaying LTE-A
    cellular networks,” IEEE Trans. Wireless Commun., Vol. 13, No. 4, April 2014.
    [29] Daohua Zhu, Jiaheng Wang, A. Lee Swindlehurst, and Chunming Zhao, ”Downlink resource reuse for device-to-device communications underlaying cellular networks,” IEEE Signal Processing Letter, Vol. 21, No. 5, May 2014.
    [30] Mohsen Nader Tehrani, Murat Uysal, and Halim Yanikomeroglu, ”Device-to-Device Communication in 5G Cellular Networks: Challenges, Solutions, and Future Directions,” IEEE Commun. Mag.
    [31] Y. Pei and Y.-C. Liang, ”Resource Allocation for Device-to-Device Communication Overlaying Two-way Cellular Networks,” IEEE Trans. Wireless Commun., Vol. 12, No. 7, Jul. 2013.
    [32] 3GPP TR 22.803, ”Feasibility Study for Proximity Services,” June, 2012.
    [33] 3GPP TR 23.703, ”Study on Architecture Enhancements to Support Proximity Services,” December, 2013.
    [34] X. Lin, J. G. Andrews, A. Ghosh, and R. Ratasuk, ”An Overview of 3GPP Device-to-Device Proximity Services,” IEEE Commun. Mag., December 2013.
    [35] Tara ALi-Yahiya, ”Understanding LTE and its Performance,” Springer, 2011.
    [36] M. Zulhasnine, C. Huang, and A. Srinivasan, ”Efficient Resource Allocation for Device-to-Device Communication Underlaying LTE Network,” 2010 IEEE 6th International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 368375, 2010.

    下載圖示 校內:2019-08-26公開
    校外:2019-08-26公開
    QR CODE