簡易檢索 / 詳目顯示

研究生: 陳昱榮
Chen, Yu-Rong
論文名稱: 日光燈及電子式安定器系統之動態分析
Dynamics Analysis of Fluorescent Lamp and Electronic Ballast System
指導教授: 林鐘烲
Lin, Jong-Lick
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 130
中文關鍵詞: 動態分析安定器日光燈
外文關鍵詞: fluorescent lamp, dynamics analysis, ballast
相關次數: 點閱:109下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • <big><pre>  本論文係探討日光燈與安定器系統之穩定性,日光燈為氣體放電燈,從實<br>驗觀察燈管的v-i特性曲線,可發現日光燈在高頻具有負增量電阻特性。依據<br>描述燈管特性之修正型Francis一階微分方程式,可推導出燈管阻抗的小信號<br>模式。此數學模式為非極小相位系統,具有右半平面的零點。因此,燈管為電<br>流控制元件,須以電流源驅動燈管,才能得到穩定的系統。
      電子式安定器係由功率開關及諧振電路組成,三種諧振電路分別為LC串聯<br>諧振電路、LC並聯諧振電路及LCC串並聯諧振電路。利用相量轉換(phasor<br>transformation)可分析諧振電路的小信號模式,係先將時域之電路轉換至相<br>量域,再根據相量域之等效電路求轉移函數。針對轉移函數之推導方法,本論<br>文提出完整模式及近似模式,其中由近似模式可將諧振電路在相量域之等效電<br>路,簡化為一階低通電路。
      結合燈管阻抗的小信號模式與諧振電路在相量域之一階低通電路,並根據<br>羅斯–赫維茲穩定性準則(Routh-Hurwitz criterion),即可判斷系統的穩定<br>性。本論文分別分析:(1)直流電源驅動電阻作為安定器,(2)低頻60 Hz市電<br>電源,傳統電感式安定器,(3)以換流器輸出高頻50 kHz方波為電源,電子式<br>安定器,三種系統之穩定性。而理論分析均以實驗佐證,確保理論之正確性。
      對於從事實際工作的工程師而言,本論文之理論分析及實驗結果,對電子<br>式安定器的深入研究、應用及探討,是有所助益的。</pre></big>

    <big><pre>  The stability of the fluorescent lamp and ballast system is<br>investigated in this thesis. Fluorescent lamps are gas discharge<br>lamps. Based on its v-i characteristic curve derived by experimental<br>results, it reveals that the dynamics of the lamp is a negative<br>incremental impedance at high frequencies. The small-signal model of<br>the lamp is obtained by using the modified Francis first-order<br>differential equation described the behavior of the lamp.<br>Interestingly, the mathematical model is non-minimum phase with a<br>right-half plane zero. As a result, the lamp is regarded as a<br>current controlled device. A current source is thereby applied to<br>the lamp to stabilize the overall system.
      The electronic ballast is composed of power transistors and<br>resonant circuit. Three resonant circuits under investigation are LC<br>series resonant circuit, LC parallel resonant circuit, and LCC<br>series and parallel resonant circuit. The phasor transformation is<br>applied to derive the small-signal model of the resonant circuits.<br>First, the circuit is transformed from the time domain into the<br>phasor domain. Then according to the equivalent phasor-domain<br>circuit, the transfer function is derived by the exact method and<br>approximate method presented in this thesis. Notably, the transfer<br>function of the equivalent phasor-domain circuit of the resonant<br>circuit can be simplified to be first-order lowpass filter on the<br>basis of the approximate method.
      According to the small-signal model of the lamp and the first-<br>order lowpass filter of the resonant circuit, the stability of<br>system can be analyzed by Routh-Hurwitz criterion. Three systems for<br>stability investigation are resistive ballast for dc operation,<br>traditional inductive ballast for utility power of 60 Hz, and<br>electronic ballast for a square wave power source of 50 kHz<br>generated from the inverter. The theoretical analysis is validated<br>by experimental results.
      For a practical engineer, the theoretical analysis and<br>experimental results in this thesis are helpful to gain insights of<br>the electronic ballast design.</pre></big>

    中文摘要 I 英文摘要 II 誌謝 III 目錄 V 圖表目錄 VIII 第一章 緒論 1-1     1.1 研究背景與動機 1-1     1.2 日光燈管概述 1-1     1.3 工作頻率對日光燈特性的影響 1-4     1.4 相關論文回顧 1-4     1.5 本論文主要貢獻 1-5     1.6 本文結構 1-7 第二章 電感式安定器與電子式安定器之比較 2-1     2.1 電感式安定器 2-1     2.2 電子式安定器 2-4 第三章 電子式安定器之換流器與諧振電路 3-1     3.1 換流器 3-1     3.2 諧振電路 3-4        3.2.1 基頻波近似法 3-4        3.2.2 品質因數Q 3-5        3.2.3 元件Q值 3-5        3.2.4 電路Q值 3-9     3.3 電子式安定器常用之三種諧振電路 3-13 第四章 日光燈管之阻抗特性與數學模式推導 4-1     4.1 日光燈管穩態工作於低頻與高頻之阻抗特性 4-1     4.2 日光燈管穩態工作於高頻之阻抗 4-2     4.3 日光燈管之動態分析 4-5        4.3.1 測量燈管之增量阻抗 4-5        4.3.2 觀察增量阻抗的頻率響應:實作結果 4-9     4.4 數學推導之燈管增量阻抗 4-12        4.4.1 Francis方程式 4-12        4.4.2 修正Francis方程式 4-14     附錄4A 定理證明 4A-1 第五章 諧振電路在相量域之數學模式推導 5-1     5.1 相量轉換 5-1     5.2 元件在相量域之等效電路 5-1     5.3 推導諧振電路在相量域之轉移函數 5-4        5.3.1 完整標準模式:狀態空間法 5-5        5.3.2 完整標準模式:電路直觀法 5-5        5.3.3 一階近似模式:大小比較法 5-12        5.3.4 一階近似模式:電路變換法 5-12        5.3.5 一階近似模式之轉移函數 5-18     附錄5A 完整標準模式:狀態空間法 5A-1        5A.1 LC串聯諧振電路 5A-1        5A.2 LC並聯諧振電路 5A-3        5A.3 LCC串並聯諧振電路 5A-5     附錄5B 一階近似模式:大小比較法 5B-1        5B.1 LC串聯諧振電路 5B-1        5B.2 LC並聯諧振電路 5B-2        5B.3 LCC串並聯諧振電路 5B-3 第六章 安定器與燈管系統之穩定性分析 6-1     6.1 以直流電源驅動燈管之穩定性分析 6-1     6.2 傳統式安定器之穩定性分析 6-2     6.3 電子式安定器之穩定性分析 6-6        6.3.1 LC串聯諧振電路 6-6        6.3.2 LC並聯諧振電路 6-7        6.3.3 LCC串並聯諧振電路 6-8     6.4 以實作驗證直流電源驅動燈管之穩定性 6-11     6.5 以實作驗證傳統式安定器之穩定性 6-13     附錄6A 傳統式安定器電路在相量域之波德圖 6A-1 第七章 電子式安定器之實作驗證 7-1     7.1 驅動電路設計 7-2     7.2 加入擾動信號之燈管電壓/電流波形及特性曲線 7-5     7.3 測量燈管小信號模式之波德圖 7-8     7.4 測量諧振電路在相量域之波德圖 7-9 第八章 結論與展望 8-1     8.1 結論 8-1     8.2 未來展望 8-2 參考文獻 自述

    <big><pre>[Bha94]   Bhat, A. K. S., “Analysis, Selection, and Design of<br>      Resonant Inverters for Electronic Ballasts,” IEEE Power<br>      Electronics Specialists Conference, Vol. 2, pp. 796-804,<br>      1994.
    [BSG02]   Ben-Yaakov, S., M. Shvartsas and S. Glozman, “Statics and<br>      Dynamics of Fluorescent Lamps Operating at High Frequency:<br>      Modeling and Simulation,” IEEE Trans. on Industry<br>      Applications, Vol. 38, pp. 1486-1492, 2002.
    [CARC02]  Calleja, A. J., J. M. Alonso, J. Ribas, E. L. J. Cardesin,<br>      J. Garcia, and M. Rico-Secades, “Electronic Ballast Based<br>      on Single-Stage High-Power-Factor Topologies: A<br>      Comparative Study,” IEEE IECON, Vol. 2, pp. 1196-1200,<br>      2002.
    [Den96]   Deng, E., “I. Negative Incremental Impedance of<br>      Fluorescent Lamps, II. Simple High Power Factor Lamp<br>      Ballasts,” Ph. D. dissertation, California Institute of<br>      Technology, Pasadena, 1996.
    [DeC97]   Deng, E. and S. Cuk, “Negative Incremental Impedance and<br>      Stability of Fluorescent Lamps,” IEEE APEC, Vol.2, pp.<br>      1050-1056, 1997.
    [Fra48]   Francis, V. J., Fundamentals of Discharge Tube Circuits,<br>      London: Methuen & Co. Ltd., 1948.
    [GuB93]   Gulko, M. and S. Ben-Yaakov, “Current-Sourcing Push-Pull<br>      Parallel-Resonance Inverter (CS-PPRI): Theory and<br>      Application as a Fluorescent Lamp Driver,” IEEE APEC, pp.<br>      411-417, 1993.
    [GlB01]   Glozman, S. and S. Ben-Yaakov, “Dynamic Interaction<br>      Analysis of HF Ballasts and Fluorescent Lamps Based on<br>      Envelope Simulation,” IEEE Trans. on Industry<br>      Applications, Vol. 37, pp. 1531-1536, 2001.
    [Ham84]   Hammer, E. E., “Fluorescent Lamp Operating<br>      Characteristics at High Frequency,” Journal of the<br>      Illuminating Engineering Society, Vol. 14, pp. 211-224,<br>      1984.
    [HaM85]   Hammer, E. E. and T. K. McGowan, “Characteristics of<br>      Various F40 Fluorescent Systems at 60 Hz and High<br>      Frequency,” IEEE Trans. on Industry Applications, Vol.<br>      21, pp. 11-16, 1985.
    [Kaz93]   Kazimierczuk, M. K., “Electronic Ballast for Fluorescent<br>      Lamps,” IEEE Trans. on Power Electronics, Vol. 8, pp.<br>      386-395, 1993.
    [KaC95]   Kazimierczuk, M. K. and D. Czarkowski, Resonant Power<br>      Converters, New York: John Wiley & Sons, 1995.
    [MeN94]   Melvin C. Cosby, J. and R. M. Nelms, “A Resonant Inverter<br>      for Electronic Ballast Applications,” IEEE Trans. on<br>      Industrial Electronics, Vol. 41, pp. 418-425, 1994.
    [PBSP01]  Pavao, R. K., F. E. Bisogno, A.R. Seidel and R. N. do<br>      Prado, “Self-Oscillating Electronic Ballast Design Based<br>      on the Point of View of Control System,” IEEE IAC, Vol.<br>       1, pp. 211-217, 2001.
    [RiC90]   Rim, C. T. and G. H. Cho, “Phasor Transformation and its<br>      Application to the DC/AC Analyses of Frequency Phase-<br>      Controlled Series Resonant Converters (SRC),” IEEE Trans.<br>      on Power Electronics, Vol. 5, pp. 201-211, 1990.
    [Ste88]   Steigerwald, R. L., “A Comparison of Half-Bridge Resonant<br>      Converter Topologies,” IEEE Trans. on Power Electronics,<br>      Vol. 3, pp. 174-182, 1988.
    [SNLV91]  Sanders, S. R., J. M. Noworolski, X. Z. Liu and G. C.<br>      Verghese, “Generalized Averaging Method for Power<br>      Conversion Circuits,” IEEE Trans. on Power Electronics,<br>      Vol. 6, pp. 251-259, 1991.
    [YLJ91]   Yang, E. X., F. C. Lee and M. M. Jovanovic, “Small-Signal<br>      Modeling of Power Electronic Circuits Using Extended<br>      Describing Function Technique,” VPEC Seminar, pp. 167-<br>      178, 1991.
    [林保偉02] 林保偉,基本電力轉換器功因校正能力性能分析與隔離式Zeta電力<br>      轉換器之模式推導及控制器設計,碩士論文,國立成功大學工程科<br>      學系,2002。
    [施奕丞03] 施奕丞,低電壓應力之嶄新單級隔離式高功因電力轉換器之模式分<br>      析與控制器設計,碩士論文,國立成功大學工程科學系,2003。
    [陳學展04] 陳學展,新型順向式單級高功因電力轉換器之分析與控制器設計,<br>      碩士論文,國立成功大學工程科學系,2004。
    [姚偉凱05] 姚偉凱,嶄新單級高功因混橋型順向式電力轉換器之分析與設計,<br>      碩士論文,國立成功大學工程科學系,2005。
    [李佳興05] 李佳興,用於驅動HID燈之高頻可調光電子安定器,碩士論文,私<br>      立中原大學電機工程學系,2005。
    [林昌賢00] 林昌賢,單晶式螢光燈電子安定器,博士論文,國立台灣大學電機<br>      工程研究所,2000。
    [楊東益00] 楊東益,單級高功因非對稱波寬調光之螢光燈電子安定器,碩士論<br>      文,國立中山大學電機工程學系,2000。
    [吳余97]  吳財福、余德鴻,電子安定器綜論,全華科技圖書股份有限公司,<br>      1997。
    [吳余劉97] 吳財福、余德鴻、劉原全,單級高功因電子安定器,全華科技圖書<br>      股份有限公司,1997。
    [吳吳余98] 吳財福、吳永駿、余德鴻,調光電子安定器,全華科技圖書股份有<br>      限公司,1998。
    [袁杰99]  袁杰,高頻電路分析與設計(一),全威圖書有限公司,1999。
    [路秋生04] 路秋生,高頻交流電子鎮流技術與應用,人民郵電出版社,2004。</pre></big>

    下載圖示 校內:2008-08-25公開
    校外:2009-08-25公開
    QR CODE