| 研究生: |
陳昱榮 Chen, Yu-Rong |
|---|---|
| 論文名稱: |
日光燈及電子式安定器系統之動態分析 Dynamics Analysis of Fluorescent Lamp and Electronic Ballast System |
| 指導教授: |
林鐘烲
Lin, Jong-Lick |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 動態分析 、安定器 、日光燈 |
| 外文關鍵詞: | fluorescent lamp, dynamics analysis, ballast |
| 相關次數: | 點閱:109 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
<big><pre> 本論文係探討日光燈與安定器系統之穩定性,日光燈為氣體放電燈,從實<br>驗觀察燈管的v-i特性曲線,可發現日光燈在高頻具有負增量電阻特性。依據<br>描述燈管特性之修正型Francis一階微分方程式,可推導出燈管阻抗的小信號<br>模式。此數學模式為非極小相位系統,具有右半平面的零點。因此,燈管為電<br>流控制元件,須以電流源驅動燈管,才能得到穩定的系統。
電子式安定器係由功率開關及諧振電路組成,三種諧振電路分別為LC串聯<br>諧振電路、LC並聯諧振電路及LCC串並聯諧振電路。利用相量轉換(phasor<br>transformation)可分析諧振電路的小信號模式,係先將時域之電路轉換至相<br>量域,再根據相量域之等效電路求轉移函數。針對轉移函數之推導方法,本論<br>文提出完整模式及近似模式,其中由近似模式可將諧振電路在相量域之等效電<br>路,簡化為一階低通電路。
結合燈管阻抗的小信號模式與諧振電路在相量域之一階低通電路,並根據<br>羅斯–赫維茲穩定性準則(Routh-Hurwitz criterion),即可判斷系統的穩定<br>性。本論文分別分析:(1)直流電源驅動電阻作為安定器,(2)低頻60 Hz市電<br>電源,傳統電感式安定器,(3)以換流器輸出高頻50 kHz方波為電源,電子式<br>安定器,三種系統之穩定性。而理論分析均以實驗佐證,確保理論之正確性。
對於從事實際工作的工程師而言,本論文之理論分析及實驗結果,對電子<br>式安定器的深入研究、應用及探討,是有所助益的。</pre></big>
<big><pre> The stability of the fluorescent lamp and ballast system is<br>investigated in this thesis. Fluorescent lamps are gas discharge<br>lamps. Based on its v-i characteristic curve derived by experimental<br>results, it reveals that the dynamics of the lamp is a negative<br>incremental impedance at high frequencies. The small-signal model of<br>the lamp is obtained by using the modified Francis first-order<br>differential equation described the behavior of the lamp.<br>Interestingly, the mathematical model is non-minimum phase with a<br>right-half plane zero. As a result, the lamp is regarded as a<br>current controlled device. A current source is thereby applied to<br>the lamp to stabilize the overall system.
The electronic ballast is composed of power transistors and<br>resonant circuit. Three resonant circuits under investigation are LC<br>series resonant circuit, LC parallel resonant circuit, and LCC<br>series and parallel resonant circuit. The phasor transformation is<br>applied to derive the small-signal model of the resonant circuits.<br>First, the circuit is transformed from the time domain into the<br>phasor domain. Then according to the equivalent phasor-domain<br>circuit, the transfer function is derived by the exact method and<br>approximate method presented in this thesis. Notably, the transfer<br>function of the equivalent phasor-domain circuit of the resonant<br>circuit can be simplified to be first-order lowpass filter on the<br>basis of the approximate method.
According to the small-signal model of the lamp and the first-<br>order lowpass filter of the resonant circuit, the stability of<br>system can be analyzed by Routh-Hurwitz criterion. Three systems for<br>stability investigation are resistive ballast for dc operation,<br>traditional inductive ballast for utility power of 60 Hz, and<br>electronic ballast for a square wave power source of 50 kHz<br>generated from the inverter. The theoretical analysis is validated<br>by experimental results.
For a practical engineer, the theoretical analysis and<br>experimental results in this thesis are helpful to gain insights of<br>the electronic ballast design.</pre></big>
<big><pre>[Bha94] Bhat, A. K. S., “Analysis, Selection, and Design of<br> Resonant Inverters for Electronic Ballasts,” IEEE Power<br> Electronics Specialists Conference, Vol. 2, pp. 796-804,<br> 1994.
[BSG02] Ben-Yaakov, S., M. Shvartsas and S. Glozman, “Statics and<br> Dynamics of Fluorescent Lamps Operating at High Frequency:<br> Modeling and Simulation,” IEEE Trans. on Industry<br> Applications, Vol. 38, pp. 1486-1492, 2002.
[CARC02] Calleja, A. J., J. M. Alonso, J. Ribas, E. L. J. Cardesin,<br> J. Garcia, and M. Rico-Secades, “Electronic Ballast Based<br> on Single-Stage High-Power-Factor Topologies: A<br> Comparative Study,” IEEE IECON, Vol. 2, pp. 1196-1200,<br> 2002.
[Den96] Deng, E., “I. Negative Incremental Impedance of<br> Fluorescent Lamps, II. Simple High Power Factor Lamp<br> Ballasts,” Ph. D. dissertation, California Institute of<br> Technology, Pasadena, 1996.
[DeC97] Deng, E. and S. Cuk, “Negative Incremental Impedance and<br> Stability of Fluorescent Lamps,” IEEE APEC, Vol.2, pp.<br> 1050-1056, 1997.
[Fra48] Francis, V. J., Fundamentals of Discharge Tube Circuits,<br> London: Methuen & Co. Ltd., 1948.
[GuB93] Gulko, M. and S. Ben-Yaakov, “Current-Sourcing Push-Pull<br> Parallel-Resonance Inverter (CS-PPRI): Theory and<br> Application as a Fluorescent Lamp Driver,” IEEE APEC, pp.<br> 411-417, 1993.
[GlB01] Glozman, S. and S. Ben-Yaakov, “Dynamic Interaction<br> Analysis of HF Ballasts and Fluorescent Lamps Based on<br> Envelope Simulation,” IEEE Trans. on Industry<br> Applications, Vol. 37, pp. 1531-1536, 2001.
[Ham84] Hammer, E. E., “Fluorescent Lamp Operating<br> Characteristics at High Frequency,” Journal of the<br> Illuminating Engineering Society, Vol. 14, pp. 211-224,<br> 1984.
[HaM85] Hammer, E. E. and T. K. McGowan, “Characteristics of<br> Various F40 Fluorescent Systems at 60 Hz and High<br> Frequency,” IEEE Trans. on Industry Applications, Vol.<br> 21, pp. 11-16, 1985.
[Kaz93] Kazimierczuk, M. K., “Electronic Ballast for Fluorescent<br> Lamps,” IEEE Trans. on Power Electronics, Vol. 8, pp.<br> 386-395, 1993.
[KaC95] Kazimierczuk, M. K. and D. Czarkowski, Resonant Power<br> Converters, New York: John Wiley & Sons, 1995.
[MeN94] Melvin C. Cosby, J. and R. M. Nelms, “A Resonant Inverter<br> for Electronic Ballast Applications,” IEEE Trans. on<br> Industrial Electronics, Vol. 41, pp. 418-425, 1994.
[PBSP01] Pavao, R. K., F. E. Bisogno, A.R. Seidel and R. N. do<br> Prado, “Self-Oscillating Electronic Ballast Design Based<br> on the Point of View of Control System,” IEEE IAC, Vol.<br> 1, pp. 211-217, 2001.
[RiC90] Rim, C. T. and G. H. Cho, “Phasor Transformation and its<br> Application to the DC/AC Analyses of Frequency Phase-<br> Controlled Series Resonant Converters (SRC),” IEEE Trans.<br> on Power Electronics, Vol. 5, pp. 201-211, 1990.
[Ste88] Steigerwald, R. L., “A Comparison of Half-Bridge Resonant<br> Converter Topologies,” IEEE Trans. on Power Electronics,<br> Vol. 3, pp. 174-182, 1988.
[SNLV91] Sanders, S. R., J. M. Noworolski, X. Z. Liu and G. C.<br> Verghese, “Generalized Averaging Method for Power<br> Conversion Circuits,” IEEE Trans. on Power Electronics,<br> Vol. 6, pp. 251-259, 1991.
[YLJ91] Yang, E. X., F. C. Lee and M. M. Jovanovic, “Small-Signal<br> Modeling of Power Electronic Circuits Using Extended<br> Describing Function Technique,” VPEC Seminar, pp. 167-<br> 178, 1991.
[林保偉02] 林保偉,基本電力轉換器功因校正能力性能分析與隔離式Zeta電力<br> 轉換器之模式推導及控制器設計,碩士論文,國立成功大學工程科<br> 學系,2002。
[施奕丞03] 施奕丞,低電壓應力之嶄新單級隔離式高功因電力轉換器之模式分<br> 析與控制器設計,碩士論文,國立成功大學工程科學系,2003。
[陳學展04] 陳學展,新型順向式單級高功因電力轉換器之分析與控制器設計,<br> 碩士論文,國立成功大學工程科學系,2004。
[姚偉凱05] 姚偉凱,嶄新單級高功因混橋型順向式電力轉換器之分析與設計,<br> 碩士論文,國立成功大學工程科學系,2005。
[李佳興05] 李佳興,用於驅動HID燈之高頻可調光電子安定器,碩士論文,私<br> 立中原大學電機工程學系,2005。
[林昌賢00] 林昌賢,單晶式螢光燈電子安定器,博士論文,國立台灣大學電機<br> 工程研究所,2000。
[楊東益00] 楊東益,單級高功因非對稱波寬調光之螢光燈電子安定器,碩士論<br> 文,國立中山大學電機工程學系,2000。
[吳余97] 吳財福、余德鴻,電子安定器綜論,全華科技圖書股份有限公司,<br> 1997。
[吳余劉97] 吳財福、余德鴻、劉原全,單級高功因電子安定器,全華科技圖書<br> 股份有限公司,1997。
[吳吳余98] 吳財福、吳永駿、余德鴻,調光電子安定器,全華科技圖書股份有<br> 限公司,1998。
[袁杰99] 袁杰,高頻電路分析與設計(一),全威圖書有限公司,1999。
[路秋生04] 路秋生,高頻交流電子鎮流技術與應用,人民郵電出版社,2004。</pre></big>