簡易檢索 / 詳目顯示

研究生: 郭駿賢
Kuo, Chun-Hsien
論文名稱: 鐵鈷鎳磁性化石墨烯的基本性質
Essential Properties of Fe-,Co- and Ni-Magnetized Graphene
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 78
中文關鍵詞: 固態物理第一原理石墨烯鐵鈷鎳原子吸附石墨烯
外文關鍵詞: Solid State Physics, First-Principles Method, Graphene, Fe-/Co- and Ni-adsorbed graphenes
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著電腦科技的不斷進步,我們可預期直接使用固態物理理論預測材料性質的第一原理計算(First-Principles Calculations)在未來的材料系統設計中的角色將會越來越吃重。所謂「第一原理」是指在計算過程中不需要由實驗提供的參數,只要知道材料組成的元素便可直接從解其對應的薛丁格方程,求出其所有的物性。

    眾所皆知,石墨烯之二維結構材料,由於獨特的結構、電子特性及化學特性等,已經是現階段非常熱門的討論對象。本論文使用VASP材料模擬程式,運用第一原理來計算,將石墨烯奈米級表面吸附鐵磁性原子(鐵、鈷、鎳),改變鐵磁性金屬原子吸附的濃度,討論不同濃度和排列方式來吸附所造成的幾何結構、電子特性、能帶、電荷密度、電荷分佈和態密度(density of state,DOS)。從幾何結構得知最佳吸附位置、鍵長、結合能的變化,並藉由調控濃度來改變其吸附情形和鍵結變化趨勢,並與簡單的圖像分析與計算比對加以驗證鐵鈷鎳磁性化石墨烯的多元特性。

    The electronic properties,one of important topics in physic,chemistry,and materials are greatly diversified by various adatom adsorptions. Previous experimental studies show that ferromagnetic adatom related graphenes belong to the n-type metals,depending on the magnetized conditions. The small energy gaps due to the high concentration doping of cobalt are clearly evidenced in the band structure. Apparently,there exist the diversified essential properties,covering the opening of band gap or the distortion of the Dirac-cone structure,the metallic behaviors due to free electrons,the creation of the adatom-dominated or (adatom,C)-co-dominated energy bands,the degeneracy or splitting of the spin-related energy bands,the multi- or single-orbital hybridizations in adatom-C bonds,as well as ferromagnetism and non-magnetism. The energy band analysis indicates that Fe adsorbed on the graphene surface is semi-half-metallic.

    口試合格證明............................................I 摘要...................................................Ⅱ Abstract..............................................Ⅲ 誌謝..................................................VI 目錄................................................VIII 圖目錄.................................................X 第一章 緒論............................................ 1 1.1 引言...............................................1 1.2 二維度半導體簡介....................................1 1.2.1 摩爾定律..........................................1 1.2.2 二維度半導體簡述.................................. 2 1.3 低維度碳奈米材料結構介紹..............................4 1.3.1 零維度之碳六十.....................................4 1.3.2 一維度之碳奈米管...................................6 1.3.3 二維度之石墨烯.....................................8 1.4 二維度碳奈米材料的製程...............................10 1.4.1 撕裂石墨製程......................................10 1.4.2 化學氣相沉積製程..................................11 1.5 二維度碳奈米材料的應用...............................12 1.6 材料性質之第一原理計算...............................13 1.7 研究動機............................................14 第二章 理論與文獻回顧....................................15 2.1 磁性的原理..........................................15 2.1.1 磁性物質種類......................................16 2.1.2 磁滯曲線..........................................19 2.1.3 磁區與與粒徑的關係.................................20 2.2 石墨烯重要特性.......................................22 2.2.1 石墨烯的結構特性...................................22 2.2.2 石墨烯的光學量測...................................23 2.2.3 石墨烯的電子特性與應用.............................24 2.3 Density Functional Theory..........................25 2.3.1 密度泛函理論......................................25 2.3.2 Bloch's theorem–Eigenvalue.......................26 2.4 軌域混成 (Orbital Hybridization)....................29 第三章 流程與操作........................................31 3.1 流程操作簡述.........................................31 3.2 第一原理簡述.........................................31 3.3 實際流程步驟.........................................32 3.3.1 取得最佳晶格結構與原子位置..........................32 3.3.2 取得布里淵區座標與磁偶極矩..........................34 3.3.3 建立能帶結構中的必要資料與計算......................37 3.3.4 建立態密度中的必要資料與計算.......................40 3.3.5 結合能 (Binding Energy)..........................42 3.3.6 自旋分佈 (Spin Distribution).....................45 3.3.7 電荷分佈 (Charge Density)........................47 3.3.8 電荷分佈變化 (Charge Density Difference).........50 第四章 結果與討論.......................................55 4.1 磁性化石墨烯之密度泛函理論 (DFT).....................56 4.2 幾何結構 (Geometric Structures)....................58 4.3 能帶結構 (Band Structures).........................62 4.4 自旋密度分佈 (Spin-Density Distribution)............67 4.5 軌道投影態密度 (Orbital-Projected DOS)..............68 4.6 空間電荷分佈 (Spatial Charge Distribution)..........72 第五章 結論與未來發展....................................74 5.1 結論...............................................74 5.2 未來發展...........................................76 參考文獻...............................................77

    [1]成大物理論文,Zheng-Wei Liu & Ming-Fa Lin,First-Principles Calculations on Feature-Rich Electronic Properties of Aluminum-Adsorbed Silicene. (2016)

    [2]成大物理論文,Che-Chang Kuo & Ming-Fa Lin,Electronic properties of hydrogenated monolayer and bilayer graphenes. (2016)

    [3]成大物理論文,Ran-Po Lin & Ming-Fa Lin,Electronic excitations of monolayer doped graphene , silicene and germanium. (2015)

    [4]成大物理論文,Hao-Chun Huang & Ming-Fa Lin,Configuration- and Concentration-Dependent Electronic Properties of Hydrogenated Graphene. (2016)

    [5]成大物理論文,SHEN,BO-JING & Ming-Fa Lin,Geometric and Electronic Properties of Double-Side Graphene Oxides. (2016)

    [6]Ngoc Thanh Thuy Tran、Duy Khanh Nguyen、Glukhova & Ming-Fa Lin,Coverage-dependent essential properties of halogenated graphene: A DFT study.SCIENTIFIC REPORTS. (2017)

    [7]Yu-Tsung Lin、Shih-Yang Lin、Yu-Huang Chiu & Ming-Fa Lin,Alkali-created rich properties in grapheme nanoribbons: Chemical bondings.SCIENTIFIC REPORTS. (2017)

    [8]N. T. T. Tran, D. Dahal, G. Gumbs, M. F. Lin, “Adatom Doping-Enriched Geometric and Electronic Properties of Pristine Graphene: a Method to Modify the Band Gap.”, Structural Chemistry 28, 5, 1311–1318. (2017)

    [9]263.M. H. Lee, H. C. Chung, J. M. Lu, C. P. Chang, and M. F. Lin*, “Electronic and optical properties in graphane”, Philos. Mag. 95, 2717-2730 (2015)

    [10]Porro, S., Accornero, E., Pirri, C. F. & Ricciardi, C. Memristive devices based on graphene oxide. Carbon 85, 383–396 (2015)

    [11]S. L. Chang, B. R. Wu, J. H. Wong and M. F. Lin*, “Configuration-dependent geometric and electronic properties of bilayer graphene nanoribbons”, Carbon 77, 1031-1039. (2014)

    [12]Veerapandian, M., Lee, M. H., Krishnamoorthy, K. & Yun, K. Synthesis, characterization and electrochemical properties of functionalized graphene oxide. Carbon 50, 4228–4238 (2012)

    [13]Yang, M., Nurbawono, A., Zhang, C. & Feng, Y. P. a. Two-dimensional graphene superlattice made with partial hydrogenation. Appl.Phys. Lett. 96, 193115 (2010)

    [14]Loh, K. P., Bao, Q., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2,1015–1024 (2010)

    [15]Harman Johll & Hway Chuan Kang,Density functional theory study of Fe, Co, and Ni adatoms and dimers adsorbed on graphene. PHYSICAL REVIEW B. (2009)

    [16]Kevin T.Chan、J.B.Neaton & Marvin L.Cohen,First-principles study of metal adatom adsorption on graphene. PHYSICAL REVIEW B. (2008)

    [17]S. Y. Lin, N. T. T. Tran, S. L. Chang, C. P. Chuu, and M. F. Lin, “Structure- and adatom-enriched essential properties of graphene nanoribbons” (accepted by CRC Press on 0615, 2018)

    [18]N. T. T. Tran, S. Y. Lin, C. Y. Lin and M. F. Lin, “Geometric and electronic properties of graphene-related systems: Chemical bondings", CRC Press, ISBN 9781138556522 (2017)

    無法下載圖示 校內:2023-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE