| 研究生: |
陳宥任 Chen, Yu-Jen |
|---|---|
| 論文名稱: |
寬波光子晶體薄膜之光聚合法製備及其光學特性探討 Fabrication and Optical Characterization of Broad-Band Photonic Films Induced via Photopolymerization |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 寬波段反射 、光聚合 、拓印 、膽固醇液晶 |
| 外文關鍵詞: | broad band Bragg reflection, photopolymerization, imprinting, cholesteric liquid crystal |
| 相關次數: | 點閱:99 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以控制光聚合機制製程製備具有寬反射波段之膽固醇液晶拓印元件,一般而言,變溫光聚合過程或是加入光吸收染料皆可達到布拉格反射波段拓寬之目的。本研究在光聚合過程中,調控紫外光源強度和液晶元件的間距,使產生紫外光強度梯度並找尋最佳製程條件。高分子模板之拓印,是藉由聚合以向列型液晶nematic LC (HSG22200)、手性摻雜物 (CB15)、 非手性的雙官能基單體4,4’-Bis ((6-acryloyloxy)hexyloxy)biphenyl (BHAB)以及光起始劑(Irgacure-184)之均勻混合物來製備,在光聚合過程中施以不同紫外光強度,影響到聚合之速率快慢進而使所拓印出之膽固醇螺旋結構有所變化,以致在同一液晶拓印元件內產生多種不同螺距,以擴寬反射波段。待溶劑洗滌步驟之後,透過所拓印之高分子模板並重新填入向列型液晶來誘導膽固醇液晶相。又,藉由堆疊兩不同反射波段之高分子模板,可成功製備寬反射波段液晶拓印元件。本研究中亦比較了本實驗之方法和固定紫外光強度聚合方法間的差異,探討布拉格光反射特性。反射光譜,是由光纖式UV-vis光譜儀來進行分析。
Fabrication of broadband cholesteric liquid crystal imprinted cell by controlling photopolymerization has been performed. The broad band Bragg reflection cholesteric liquid crystal cells have been achieved by using UV bleachable dye, temperature variance photopolymerization process, etc. In this study, imprinting and broadening of reflection band of cholesteric liquid crystal cells were achieved via controlling UV polymerization. Intensity gradient of UV light was achieved by adjusting the distance between UV lamp and the sample cell. Imprinted template was prepared by photopolymerization of mixed nematic LC (HSG22200), chiral dopant (CB15), bifunctional monomer, 4,4’-Bis((6-acryloyloxy) hexyloxy)biphenyl (BHAB), and photoinitiator (Irgacure-184). Intensity of UV light may affect the polymerization rate leads to the formation of imprinted helical construction with different pitches. Pitch gradient inside the systems usually broaden the reflection band of sample cells effectively. After polymerization, the residual liquid crystal mixture was then removed by using solvent. Refilling of nematic liquid crystal increases refractive indexes leads to the enhancement of reflection light of sample cells. Stacking of two imprinted cells with different pitches broadens reflection band effectively. In this study, comparison of this new designed process with traditional UV polymerization process was carried out. Spectral characterizations and optical reflection of sample cells were performed using fiber optic spectrometer.
1. Kopp, V. I., Fan, B., Vithana, H. K. M., & Genack, A. Z. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Optics letters, 23(21), 1707-1709, 1998.
2. Schlichting, W., Faris, S., Fan, B., Haag, J., Lu, Z., Kane, S., & Luo, H. Recording and readout of a cholesteric liquid crystal based multilayer disk. Japanese journal of applied physics, 36(1S), 587, 1997.
3. Tamaoki, N. Cholesteric liquid crystals for color information technology.Advanced Materials, 13(15), 1135-1147, 2001.
4. Lub, J., Van De Witte, P., Doornkamp, C., Vogels, J. P., & Wegh, R. T. Stable Photopatterned Cholesteric Layers Made by Photoisomerization and Subsequent Photopolymerization for Use as Color Filters in Liquid‐Crystal Displays. Advanced Materials, 15(17), 1420-1425, 2003.
5. Hikmet, R. A. M., & Kemperman, H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature, 392(6675), 476-479, 1998.
6. Lub, J., Nijssen, W. P., Wegh, R. T., Vogels, J. P., & Ferrer, A. Synthesis and properties of photoisomerizable derivatives of isosorbide and their use in cholesteric filters. Advanced Functional Materials, 15(12), 1961-1972, 2005.
7. Lub, J., Broer, D. J., Wegh, R. T., Peeters, E., & I van der Zande, B. M. Formation of optical films by photo-polymerisation of liquid crystalline acrylates and application of these films in liquid crystal display technology. Molecular Crystals and Liquid Crystals, 429(1), 77-99, 2005.
8. Chen, S. H., Jin, R. J., Katsis, D., Mastrangelo, J. C., Papernov, S., & Schmid, A. W. Photoracemization broadening of selective reflection and polarization band of glassy chiral-nematic films. Liquid Crystals, 27(2), 201-209, 2000
9. Mitov, M., Binet, C., Boudet, A., & Bourgerette, C. Glassy cholesteric broadband reflectors with a pitch gradient: material design, optical properties and microstructure. Molecular Crystals and Liquid Crystals, 358(1), 209-223, 2001.
10. Reinitzer, F. Contributions to the knowledge of cholesterol. Liquid Crystals, 5(1), 7-18, 1989.
11. O. Lehmann, Ann. Physik., 25, 852, 1908.
12. O. Lehmann, Ann. Physik., 27, 1099, 1908.
13. Kato, T., Hirai, Y., Nakaso, S., & Moriyama, M. Liquid-crystalline physical gels. Chemical Society Reviews, 36(12), 1857-1867, 2007.
14. I. Dierking, Textures of Liquid Crystals, Wiley-VCH, 2003.
15. Liu, J. H., & Yang, P. C. Preparation and optical performance of chiral polymers having azobenzene segments. Journal of Applied Polymer Science, 91(6), 3693-3704, 2004.
16. Liu, J. H., Yang, P. C., Wang, Y. K., & Wang, C. C. Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants. Liquid crystals, 33(3), 237-248, 2006.
17. Kadu, R., Singh, V. K., Verma, S. K., Raghavaiah, P., & Shaikh, M. M. (2013). Effect of substituents on crystal packing of functionalized 4, 4′-bis (benzylideneamino) diphenyl ether (s) and their reduced benzyl forms: Synthesis, characterization, optical and thermal properties. Journal of Molecular Structure, 1033, 298-311.
18. Donald, A. M., Windle, A. H., & Hanna, S. Liquid crystalline polymers. Cambridge University Press, 2006.
19. Baumgärtel, H., Franck, E. U., Grünbein, W., Topics in Physical Chemistry, Springer, New York, 1994.
20. Brown, G. H. (Ed.). Advances in liquid crystals (Vol. 2). Academic Press, 2013.
21. Prost, J. The physics of liquid crystals (No. 83). Oxford University Press, 1995.
22. Chanishvili, A., Chilaya, G., Petriashvili, G., Barberi, R., Bartolino, R., Cipparrone, G., & Oriol, L. Lasing in Dye‐Doped Cholesteric Liquid Crystals: Two New Tuning Strategies. Advanced Materials, 16(9‐10), 791-795, 2004.
23. Parmar, D. S., Singh, J. J., & Eftekhari, A. A shear sensitive monomer‐polymer liquid crystal system for wind tunnel applications. Review of Scientific Instruments, 63(1), 225-229, 1992.
24. Schmidtke, J., Kniesel, S., & Finkelmann, H. Probing the photonic properties of a cholesteric elastomer under biaxial stress. Macromolecules, 38(4), 1357-1363, 2005.
25. Chilaya, G., Hauck, G., Koswig, H. D., & Sikharulidze, D. Electric‐field controlled color effect in cholesteric liquid crystals and polymer‐dispersed cholesteric liquid crystals. Journal of Applied Physics, 80(3), 1907-1909, 1996.
26. Li, Y., Iwakura, Y., Nakayama, K., & Shimizu, H. Highly anisotropic properties of thermoplastic elastomer composites with aligned hierarchical structures. Composites Science and Technology, 67(13), 2886-2891, 2007.
27. Kang, S. W., Sprunt, S., & Chien, L. C. Polymer-stabilized cholesteric diffraction gratings: Effects of UV wavelength on polymer morphology and electrooptic properties. Chemistry of Materials, 18(18), 4436-4441, 2006.
28. Mallia, V. A., & Tamaoki, N. (2003). Photochemically driven smectic-cholesteric phase transition in an inherently photoactive dimesogen. Chemistry of Materials, 15(17), 3237-3239, 2003.
29. Oswald, P., & Pieranski, P. Nematic and cholesteric liquid crystals: concepts and physical properties illustrated by experiments. CRC press, 2005.
30. Collings, P. J., & Hird, M. Introduction to liquid crystals: chemistry and physics. CRC Press, 1997.
31. Kumar, S. Liquid crystals: experimental study of physical properties and phase transitions. Cambridge University Press, 2001
32. Khoo, I. C., & Wu, S. T. Optics and nonlinear optics of liquid crystals (Vol. 1). World Scientific, 1993.
33. Doane, J. W., Vaz, N. A., Wu, B. G., & Žumer, S. Field controlled light scattering from nematic microdroplets. Applied Physics Letters, 48(4), 269-271, 1986.
34. Kim, K. H., Yu, B. H., Choi, S. W., Oh, S. W., & Yoon, T. H. Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure. Optics Express, 20(22), 24376-24381, 2012.
35. Wu, S. T., & Yang, D. K. Reflective liquid crystal displays. Wiley, 2001.
36. Mitov, M. (2012). Cholesteric liquid crystals with a broad light reflection band. Advanced Materials, 24(47), 6260-6276, 2012.
37. Broer. D. J., Lub. J., & Mol. G. N. Wide-band reflective polarizers from cholesteric polymer networks with a pitch gradient. Nature, 378, 1995.
38. Lavernhe, A., Mitov, M., Binet, C., & Bourgerette, C. How to broaden the light reflection band in cholesteric liquid crystals? A new approach based on polymorphism. Liquid Crystals, 28(5), 803-807, 2001.
39. Pierron, J., Boudet, A., Sopena, P., Mitov, M., & Sixou, P. Cholesteric textures observed by transmission electron microscopy in diffraction contrast. Liquid Crystals, 19(2), 257-267, 1995.
40. Harada, Y., Sakajiri, K., Kuwahara, H., Kang, S., Watanabe, J., & Tokita, M. Cholesteric films exhibiting expanded or split reflection bands prepared by atmospheric photopolymerisation of diacrylic nematic monomer doped with a photoresponsive chiral dopant. Journal of Materials Chemistry C, 3(15), 3790-3795, 2015.
41. Guo, R., Cao, H., Liu, H., Li, K., Huang, W., Xiao, J., & Yang, H. Characteristics of wide-band reflection of polymer-stabilised cholesteric liquid crystal cell prepared from an unsticking technique. Liquid Crystals, 36(9), 939-946, 2009.
42. Liu, J. H., Hung, H. J., Wu, D. S., Hong, S. M., & Fu, A. Y. Preparation and electro‐optical behaviors of polymer stabilized liquid crystal cells with chiral matrices derived from (−)‐camphor. Journal of Applied Polymer Science, 98(1), 88-96, 2005.
43. Liu, J. H., Fang, H., & Chien, C. C. Solvent‐tunable colors in imprinted helical structures on polymer template via multiple UV‐induced polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 49(5), 1256-1262, 2011.
44. Mitov, M., & Dessaud, N. Going beyond the reflectance limit of cholesteric liquid crystals. Nature Materials, 5(5), 361-364, 2006.
45. Broer, D. J., & Heynderickx, I. Three-dimensionally ordered polymer networks with a helicoidal structure. Macromolecules, 23(9), 2474-2477, 1990.
46. Yamada, H., Manas-Zloczower, I., & Feke, D. L. Observation and analysis of the infiltration of polymer liquids into carbon black agglomerates. Chemical Engineering Science, 53(11), 1963-1972, 1998.