簡易檢索 / 詳目顯示

研究生: 黃義敦
Huang, Yi-Tun
論文名稱: 具三層注入之矩形小翼對微混合器中的流體混合
Mixing of fluids in a micromixer with rectangular winglet pairs by using a three-stream inlet
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 197
中文關鍵詞: 微流體力學矩形小翼混合三層注入縱向渦流
外文關鍵詞: microfluidics, rectangular winglets, mixing, three-stream inlet, longitudinal vortex
相關次數: 點閱:61下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一具三層注入方式的矩形小翼對微混合器,流體從兩入口注入後,設計使一種流體自中心而另一種流體自兩側流入主流道,即形成三明治狀的分層,期望藉此增加不同流體間的接觸面積以促進混合。流體在流經流道內的矩形小翼對時,其不同流體間的介面位置會對混合造成很大的影響,為了得到最佳的混合效果,必須仔細探討矩形小翼對的部分幾何尺寸參數。本研究使用數值模擬軟體CFDRC模擬微混合器中流體的混合現象,並配合實驗,觀察螢光反應的圖像以驗證模擬結果。微混合器製程上,先以光微影技術製作微混合器母模,接著以PDMS翻模並與載玻片接合完成微混合器的製作,最後使用雷射共軛焦顯微鏡觀察微混合器中流體的流動現象。本文結果顯示:(一) 矩形小翼對的開口間隙在主流道中心左右交錯排列,使其具有些微不對稱性時,可以得到較佳的混合效果;(二) 矩形小翼對的攻角相對於主要流動方向以低於22.5度為佳,其能有效地引導流體扭曲和產生縱向渦流以促進混合,另外,在高雷諾數時,增加每個矩形小翼對之間的間隙,可使其間之縱向渦流充分地帶動流體以促進混合;(三) 矩形小翼對與流道兩側壁面之間的距離較小時,於高雷諾數能使較多的流體自矩形小翼對的上方間隙流過,加強流體扭曲的現象,於低雷諾數能縮短擴散長度,二者皆使混合效果變好。總之,原型改由具三層注入的方式,並由上述的方針安排五組矩形小翼對後,於各雷諾數之流動條件下的出口皆可得到高混合度(>0.9)。

    In this work, we propose and investigate a micromixer which allows three streams of liquids - a core stream sandwiched by two cladding streams - to flow into the main channel with rectangular winglet pairs (RWP) from two inlets. The locations of fluid stream interfaces have significant effect on fluid mixing in a channel with RWP and the increase of fluid interfaces in the proposed mixer is expect to enhance fluid mixing. To take advantage of the proposed design, we have to arrange the RWP appropriately. We examine fluid mixing in the proposed micromixers by numerical simulation and experiment. We use the commercial codes, CFDRC, to simulate the fluid mixing in the micromixer. Comparing the simulation results and fluorescent images shows that the simulation results are reliable. The SU-8 is used to fabricate the mold of micromixers by photolithography. Then, we replicate the mold by PDMS (polydimethysiloxane) and bond the PDMS with a cover glass to complete the fabrication of a micromixer. Finally, we apply the laser confocal spectral microscopy to observe mixing flow in the micromixer. The results show the following trends. (i) When the gap between rectangular winglets of a RWP located slightly asymmetric in the main channel and the centers of the gaps are arranged on both sides of the center of the main channel alternatively, better mixing is achieved. (ii) The RWPs with an angle of attack not greater than 22.5 degrees to the main flow direction may generate longitudinal vortices effectively and lead the distortion of interfaces between fluids to enhance fluid mixing. When the Reynolds number is high, increasing the clearance between the RWPs allows the fully development of the longitudinal vortices downstream which is beneficial to mixing. (iii) When the distance between the RWPs and the channel sidewall is small, more fluids flow through the gap above the top of rectangular winglets for the cases with high Reynolds number and the diffusion length is shorten for the cases with low Reynolds number. These effects enhance fluid mixing. In summary, using the three-stream inlet does enhance fluid mixing and following the above guidelines to arrange five modules of RWPs, the micromixer may achieve a high degree of mixing (>0.9).

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XXVI 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 1 1-3 研究動機 3 1-4 本文架構 4 第二章 流道設計與數值模擬 5 2-1 微混合器設計概述 5 2-2 基本假設 6 2-3 統御方程式 6 2-4 邊界條件 7 2-5 無因次化分析 7 2-5-1 方程式的無因次化 7 2-5-2 邊界條件的無因次化 9 2-6 數值模擬 9 2-6-1 CFD-GEOM 流道幾何形狀與網格建立 10 2-6-2 CFD-ACE+ 模擬運算 10 2-6-3 CFD-VIEW 後處理 10 2-7 混合度 11 第三章 微混合器之製作與實驗觀測 12 3-1 微混合器之製作流程 12 3-1-1 光罩設計 12 3-1-2 母模製作 12 3-1-3 表面粗度儀量測光阻高度 14 3-1-4 翻模製作微混合器上蓋 14 3-1-5 微混合器上下蓋貼合與管線黏合 15 3-2 實驗觀測 15 3-2-1 工作流體與微量式注射幫浦 15 3-2-2 實驗影像擷取 15 第四章 結果與討論 17 4-1 簡介 17 4-2 網格測試 17 4-3 實驗與模擬結果之比較 18 4-4 主流道中心與矩形小翼對開口中心的距離d=0Wm、0.042Wm、0.083Wm、0.125Wm、0.167Wm、0.208Wm、0.25Wm時,對流動、混合度及壓降的影響 19 4-5 矩形小翼對攻角θ對流動、混合度及壓降的影響 23 4-5-1 矩形小翼對攻角θ=16.5°、19.5°、22.5°、30°、45°、60°、75°、90°時,對流動、混合度及壓降的影響 23 4-5-2 在不同矩形小翼對攻角θ下,流經每組矩形小翼對後其混合度變化之比較 27 4-6 矩形小翼對長度固定,改變矩形小翼對攻角θ對流動、混合度及壓降的影響 29 4-7 矩形小翼對之間的間隙對流經每組矩形小翼對後其混合度變化之影響 31 第五章 結論與未來展望 34 5-1 結論 34 5-2 未來展望 35 參考文獻 36

    1. A. Manz, N. Graber, H. M. Widmer, “Miniaturized total chemical analysis system: a novel concept for chemical sensing,” Sensors and Actuators, B, Vol. 1, pp. 244-248, 1990.
    2. Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, R. Maeda, “Ultrasonic micromixer for microfluidic systems,” Sensors and Actuators, A, Vol. 93, pp. 266-272, 2001.
    3. C.-Y. Wen, C.-P. Yeh, C.-H. Tsai, L.-M. Fu, “Rapid magnetic microfluidic mixer utilizing AC electromagnetic field,” Electrophoresis, Vol. 30, pp. 4179-4186, 2009.
    4. J.-H. Tsai, L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump,” Sensors and Actuators, A, Vol. 97-98, pp. 665-671, 2002.
    5. N.-T. Nguyen, Z. Wu, “Micromixers—a review,” Journal of Micromechanics and Microengineering, Vol. 15, R1-R16, 2005.
    6. M. Koch, H. Witt, A. G. R. Evans, A. Brunnschweiler, “Improved characterization technique for micromixers,” Journal of Micromechanics and Microengineering, Vol. 9, pp. 156-158, 1999.
    7. N. Schwesinger, T. Frank, H. Wurmus, “A modular microfluid system with an integrated micromixer,” Journal of Micromechanics and Microengineering, Vol. 6, pp. 99-102, 1996.
    8. R. Miyake, T. S. J. Lammerink, M. Elwenspoek, J. H. J. Fluitman, “Micro mixer with fast diffusion,” IEEE MEMS, pp. 248-253, 1993.
    9. R. Yang, J. D. Williams, W. Wang, “A rapid micro-mixer/reactor based on arrays of spatially impinging micro-jets,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 1345-1351, 2004.
    10. J. D. Tice, A. D. Lyon, R. F. Ismagilov, “Effects of viscosity on droplet formation and mixing in microfluidic channels,” Analytica Chimica Acta, Vol. 507, pp. 73-77, 2004.
    11. F. Jiang, K. S. Drese, S. Hardt, M. Küpper, F. Schönfeld, “Helical flows and chaotic mixing in curved micro channels,” AIChE Journal, Vol. 50, No. 9, pp. 2297-2305, 2004.
    12. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, G. M. Whitesides, “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647-651, 2002.
    13. 林雨欣, “具溝槽之波紋形微混合器中的流體混合,” 國立成功大學機械工程研究所碩士論文, 2011.
    14. R.-T. Tsai, C.-Y. Wu, “An efficient micromixer based on multidirectional vortices due to baffles and channel curvature,” Biomicrofluidics, Vol. 5, pp. 1-13, 2011.
    15. R.-T. Tsai, C.-Y. Wu, “Multidirectional vortices mixing in three-stream micromixers with two inlets,” Microsystem Technologies, Vol. 18, pp. 779-786, 2012.
    16. M. Fiebig, P. Kallwiet, N. Mitra, S. Tigglebeck, “Heat transfer enhancement and drag by longitudinal vortex generators in channel flow,” Experimental Thermal and Fluid Science, Vol. 4, pp. 103-114, 1991.
    17. S. Ferrouillat, P. Tochon, C. Garnier, H. Peerhossaini, “Intensification of heat-transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity,” Applied Thermal Engineering, Vol. 26, pp. 1820-1829, 2006.
    18. 蕭凱友, “具矩形小翼對之T型微流道中的流體混合,” 國立成功大學機械工程研究所碩士論文, 2012.
    19. S. A. Rani, B. Pitts, P. S. Steward, “Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy,” Antimicrobial Agents Chemotherapy, Vol. 49, pp. 728-732, 2005.
    20. J. Boss, “Evaluation of the homogeneity degree of mixture,” Bulk Solids Handling, Vol. 6, pp. 1207-1215, 1986.

    無法下載圖示 校內:2018-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE