| 研究生: |
陳弘章 Chen, Hong-Zhang |
|---|---|
| 論文名稱: |
桿狀病毒保存與改善其在哺乳類細胞轉染效率之研究 STUDIES FOR BETTER BACULOVIRUS PRESERVATION AND ENHANCEMENT OF ITS TRANSDUCTION TO MAMMALIAN CELLS |
| 指導教授: |
趙裕展
Chao, Yu-Chan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 桿狀病毒 、病毒脫水作用 、病毒保存 、添加劑 、哺乳類細胞基因轉移 、轉染 、穿細胞膜蛋白 、穿核膜蛋白質 、轉錄增加子 |
| 外文關鍵詞: | Baculovirus, virus dehydration, virus pesevation, supplement, mammalian cell gene transfer, transduction, CTP, PTD, transcription enhancer |
| 相關次數: | 點閱:148 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來桿狀病毒的適用範圍越來越廣,但是受限於一些先天條件、無法真正廣泛應用。 其中影響最大的兩個因子為:一、脫水或高溫會讓桿狀病毒完全喪失感染昆蟲細胞與轉染哺乳類細胞的能力。 二、桿狀病毒轉染入不同細胞的效率有異。 本研究以解決此二問題為主要宗旨: 第一部份 設計研發適當的添加劑來克服脫水或高溫的影響。 由我們的結果顯示在含有胎牛血清與 sucrose 配方下,能使病毒克服乾燥與高溫貯存的環境,在病毒長時間乾燥貯存方面、此配方仍然顯現出相當保護力。 對於桿狀病毒應用於藥物快速量產篩選、臨床試驗、或病毒之長距離運送及長時間保存,本配方是一個最佳的桿狀病毒保護添加劑。 第二部份提升桿狀病毒的轉染力。 由於桿狀病毒屬於昆蟲病毒的一種,若病毒進入細胞的比例增加一定能增加外源蛋白質的表現量。 因此、我們利用穿膜蛋白來製作假型包裝病毒(pseudo-type virus)的方式來改善病毒進入細胞的效率。 由結果顯示,假型包裝病毒除了本身對哺乳類細胞的轉染力有明顯提升外,還能增進同時轉染之其他桿狀病毒的轉染效率。 在增加外源蛋白表現方面,還可以配合其他的方法來放大外源蛋白質的表現量,如額外添加sodium butyrate 與轉染 vIE2。 桿狀病毒是一個應用性廣又具潛力系統,但是這個系統受限於一些先天的條件,使其應用受到些許阻礙,如果這些阻礙能被突破,桿狀病毒的應用性將更加廣大。 本研究的結果正好可以提供一些改進的方法,以最簡便的方式提升病毒對環境的抗性,並提供一個創新的方法來提升病毒轉染力。
Recent years, baculovirus has become an important and popular vector for emerging applications, however, its application is restricted due to a difficulty to store and enter into mammalian cells. Dehydration and high temperature decrease viral variability and viral transduction efficiency into mammalian cells, and experiments are needed to resolve these problems. In part I, an optimized formula was developed to preserve the activity of baculovirus stocks during prolonged periods of dehydration and in various storage temperatures. Dehydration of baculovirus can totally obliterate its ability to infect insect cells and the transduction of mammalian cells. Our results showed sucrose and fetal bovine serum can maintain baculovirus transduction efficiency for weeks post dehydration and high temperature treatments. The formula would be an excellent additive to baculovirus stocks used for high throughput drug screening, long distance transportation or long term storage. In part II, ways to enhance baculovirus transduction efficiency were developed. Since baculovirus is a safe and popular tool for foreign protein production in the mammalian cells, if virus entrance could be enhanced, foreign gene expression should be greatly increased. In this study, we used pseudo-type virus containing engineered trans-membrane proteins to overcome the barrier on baculovirus entrance. Our results showed that not only pseudo-type viruses themselves, but also other simultaneously co-transduction viruses had better transduction efficiency. In addition, transduction of the virus can be immensely boosted by the addition of sodium butyrate or co-transduction of vIE2. Baculovirus is a safe and useful system, and it can serve as a tool for better protein expression in mammalian cells with high quality, but it encounters some restriction in application. These experiments provided one optimized formula to improve baculovirus stability under preservation, and in addition, provided methods to assist better transduction of baculovirus into mammalian cells.
References
1. Vazquez, P., Roncero, I., Blazquez, E. & Alvarez, E. Substitution of the cysteine 438 residue in the cytoplasmic tail of the glucagon-like peptide-1 receptor alters signal transduction activity. J Endocrinol 185, 35-44 (2005).
2. Hu, Y.C. Baculovirus as a highly efficient expression vector in insect and mammalian cells. Acta Pharmacol Sin 26, 405-416 (2005).
3. Kost, T.A. & Condreay, J.P. Recombinant baculoviruses as expression vectors for insect and mammalian cells. Curr Opin Biotechnol 10, 428-433 (1999).
4. Kost, T.A., Condreay, J.P. & Jarvis, D.L. Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 23, 567-575 (2005).
5. Mosley, A.J. et al. Histone deacetylase inhibitors increase virus gene expression but decrease CD8+ cell antiviral function in HTLV-1 infection. Blood 108, 3801-3807 (2006).
6. Khan, A.N., Magner, W.J. & Tomasi, T.B. An epigenetic vaccine model active in the prevention and treatment of melanoma. J Transl Med 5, 64 (2007).
7. Andersson, M. et al. Baculovirus-mediated gene transfer and recombinant protein expression do not interfere with insulin dependent phosphorylation of PKB/Akt in human SHSY-5Y and C3A cells. BMC Cell Biol 8, 6 (2007).
8. Hofmann, C. et al. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A 92, 10099-10103 (1995).
9. Larsen, L. et al. Inhibition of histone deacetylases prevents cytokine-induced toxicity in beta cells. Diabetologia 50, 779-789 (2007).
10. Possee, R.D. Baculoviruses as expression vectors. Curr Opin Biotechnol 8, 569-572 (1997).
11. Merrington, C.L., Bailey, M.J. & Possee, R.D. Manipulation of baculovirus vectors. Mol Biotechnol 8, 283-297 (1997).
12. Chen, W.J., Moomaw, J.F., Overton, L., Kost, T.A. & Casey, P.J. High level expression of mammalian protein farnesyltransferase in a baculovirus system. The purified protein contains zinc. J Biol Chem 268, 9675-9680 (1993).
13. Condreay, J.P., Witherspoon, S.M., Clay, W.C. & Kost, T.A. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci U S A 96, 127-132 (1999).
14. Kost, T.A. & Condreay, J.P. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol 20, 173-180 (2002).
15. Wu, Y.L. & Chao, Y.C. The establishment of a controllable expression system in baculovirus: stimulated overexpression of polyhedrin promoter by LEF-2. Biotechnol Prog 24, 1232-1240 (2008).
16. Liu, C.Y., Wang, C.H., Wang, J.C. & Chao, Y.C. Stimulation of baculovirus transcriptome expression in mammalian cells by baculoviral transcriptional activators. J Gen Virol 88, 2176-2184 (2007).
17. Liu, C.Y. et al. RING and coiled-coil domains of baculovirus IE2 are critical in strong activation of the cytomegalovirus major immediate-early promoter in mammalian cells. J Virol 83, 3604-3616 (2009).
18. Kost, T.A., Condreay, J.P., Ames, R.S., Rees, S. & Romanos, M.A. Implementation of BacMam virus gene delivery technology in a drug discovery setting. Drug Discov Today 12, 396-403 (2007).
19. Airenne, K.J. et al. Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther 7, 1499-1504 (2000).
20. Xu, C.Y. et al. Mammalian gene-transfer and expression efficiencies of baculovirus bacV-CMV-EGFPA. Sheng Wu Gong Cheng Xue Bao 20, 73-77 (2004).
21. Park, S.W., Lee, H.K., Kim, T.G., Yoon, S.K. & Paik, S.Y. Hepatocyte-specific gene expression by baculovirus pseudotyped with vesicular stomatitis virus envelope glycoprotein. Biochem Biophys Res Commun 289, 444-450 (2001).
22. Barsoum, J., Brown, R., McKee, M. & Boyce, F.M. Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum Gene Ther 8, 2011-2018 (1997).
23. Kukowska-Latallo, J.F. et al. Intravascular and endobronchial DNA delivery to murine lung tissue using a novel, nonviral vector. Hum Gene Ther 11, 1385-1395 (2000).
24. Friesen, P.D. in Fields Virology, 5th Edition. (ed. P.M.H. D. M. Knipe, D. E. Griffin, R. A. Lamb, M. A. Martin, B. Roizman, and S. E. Straus (ed.), ) 707-736 (Lippincott-Raven Publishers, Philadelphia, PA; 2007).
25. Smith, G.E., Summers, M.D. & Fraser, M.J. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol 3, 2156-2165 (1983).
26. Condreay, J.P. & Kost, T.A. Baculovirus expression vectors for insect and mammalian cells. Curr Drug Targets 8, 1126-1131 (2007).
27. Liu, C.Y., Chen, H.Z. & Chao, Y.C. Maximizing baculovirus-mediated foreign proteins expression in mammalian cells. Curr Gene Ther 10, 232-241 (2010).
28. Jin, R. et al. Safety and immunogenicity of H5N1 influenza vaccine based on baculovirus surface display system of Bombyx mori. PLoS One 3, 3933 (2008).
29. Lin, Y.J. et al. Baculovirus-derived hemagglutinin vaccine protects chickens from lethal homologous virus H5N1 challenge. J Vet Med Sci 70, 1147-1152 (2008).
30. Prabakaran, M. et al. Protective immunity against influenza H5N1 virus challenge in mice by intranasal co-administration of baculovirus surface-displayed HA and recombinant CTB as an adjuvant. Virology 380, 412-420 (2008).
31. Behle, R.W., Tamez-Guerra, P. & McGuire, M.R. Field activity and storage stability of Anagrapha falcifera nucleopolyhedrovirus (AfMNPV) in spray-dried lignin-based formulations. J Econ Entomol 96, 1066-1075 (2003).
32. Tamez-Guerra, P., McGuire, M.R., Behle, R.W., Shasha, B.S. & Pingel, R.L. Storage stability of Anagrapha falcifera nucleopolyhedrovirus in spray-dried formulations. J Invertebr Pathol 79, 7-16 (2002).
33. Jorio, H., Tran, R. & Kamen, A. Stability of serum-free and purified baculovirus stocks under various storage conditions. Biotechnol Prog 22, 319-325 (2006).
34. Frolov, V.G. & Gusev Iu, M. Stability of Marburg virus to lyophilization process and subsequent storage at different temperatures. Vopr Virusol 41, 275-277 (1996).
35. Wilschut, J. et al. Preservation of influenza virosome structure and function during freeze-drying and storage. J Liposome Res 17, 173-182 (2007).
36. de Jonge, J. et al. Inulin sugar glasses preserve the structural integrity and biological activity of influenza virosomes during freeze-drying and storage. Eur J Pharm Sci 32, 33-44 (2007).
37. Croyle, M.A., Cheng, X. & Wilson, J.M. Development of formulations that enhance physical stability of viral vectors for gene therapy. Gene Ther 8, 1281-1290 (2001).
38. Pisal, S., Wawde, G., Salvankar, S., Lade, S. & Kadam, S. Vacuum foam drying for preservation of LaSota virus: effect of additives. AAPS PharmSciTech 7, 60 (2006).
39. Gupta, C.K., Leszczynski, J., Gupta, R.K. & Siber, G.R. Stabilization of respiratory syncytial virus (RSV) against thermal inactivation and freeze-thaw cycles for development and control of RSV vaccines and immune globulin. Vaccine 14, 1417-1420 (1996).
40. Jou, R. et al. Study on the stability of Japanese encephalitis vaccine--development of freeze-dry dosage form. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi 29, 57-64 (1996).
41. Croyle, M.A., Roessler, B.J., Davidson, B.L., Hilfinger, J.M. & Amidon, G.L. Factors that influence stability of recombinant adenoviral preparations for human gene therapy. Pharm Dev Technol 3, 373-383 (1998).
42. Alcock, R. et al. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass. Sci Transl Med 2, 19-12 (2010).
43. Ohmori, S., Ohno, Y., Makino, T. & Kashihara, T. Development and evaluation of the tablets coated with the novel formulation termed thin-layer sugarless coated tablets. Int J Pharm 278, 459-469 (2004).
44. Fernandez-Santos, M.R., Dominguez-Rebolledo, A.E., Esteso, M.C., Garde, J.J. & Martinez-Pastor, F. Refrigerated storage of red deer epididymal spermatozoa in the epididymis, diluted and with vitamin C supplementation. Reprod Domest Anim 44, 212-220 (2009).
45. Liu, W., Wang, D.Q. & Nail, S.L. Freeze-drying of proteins from a sucrose-glycine excipient system: effect of formulation composition on the initial recovery of protein activity. AAPS PharmSciTech 6, 150-157 (2005).
46. Bakaltcheva, I., O'Sullivan, A.M., Hmel, P. & Ogbu, H. Freeze-dried whole plasma: evaluating sucrose, trehalose, sorbitol, mannitol and glycine as stabilizers. Thromb Res 120, 105-116 (2007).
47. Toegel, S., Salar-Behzadi, S., Horaczek-Clausen, A. & Viernstein, H. Preservation of aerial conidia and biomasses from entomopathogenic fungi Beauveria brongniartii and Metarhizium anisopliae during lyophilization. J Invertebr Pathol 105, 16-23 (2010).
48. AlHusban, F., Perrie, Y. & Mohammed, A.R. Preparation, optimisation and characterisation of lyophilised rapid disintegrating tablets based on gelatin and saccharide. Curr Drug Deliv 7, 65-75 (2010).
49. Liao, Y.H., Brown, M.B., Quader, A. & Martin, G.P. Protective mechanism of stabilizing excipients against dehydration in the freeze-drying of proteins. Pharm Res 19, 1854-1861 (2002).
50. Sasaki, M., Kato, Y., Yamada, H. & Terada, S. Development of a novel serum-free freezing medium for mammalian cells using the silk protein sericin. Biotechnol Appl Biochem 42, 183-188 (2005).
51. Chang, Y.J., Liu, C.Y., Chiang, B.L., Chao, Y.C. & Chen, C.C. Induction of IL-8 release in lung cells via activator protein-1 by recombinant baculovirus displaying severe acute respiratory syndrome-coronavirus spike proteins: identification of two functional regions. J Immunol 173, 7602-7614 (2004).
52. O’Reilly, D.R., L. K. Miller, and Luckow, V. A. Baculovirus expression vectors: a laboratory manual. Oxford University Press,New York, NY. (1994).
53. Chen, H.C. et al. The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials 30, 674-681 (2009).
54. Liu, X. et al. Efficient and stable gene expression in rabbit intervertebral disc cells transduced with a recombinant baculovirus vector. Spine (Phila Pa 1976) 31, 732-735 (2006).
55. Herniou, E.A., Olszewski, J.A., Cory, J.S. & O'Reilly, D.R. The genome sequence and evolution of baculoviruses. Annu Rev Entomol 48, 211-234 (2003).
56. Bell, L.N., Hageman, M.J. & Muraoka, L.M. Thermally induced denaturation of lyophilized bovine somatotropin and lysozyme as impacted by moisture and excipients. J Pharm Sci 84, 707-712 (1995).
57. Fitter, J. The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins. Biophys J 76, 1034-1042 (1999).
58. Greiff, D. Stabilities of suspensions of influenza virus dried by sublimation of ice in vacuo to different contents of residual moisture and sealed under different gases. Appl Microbiol 20, 935-938 (1970).
59. Greiff, D. Protein structure and freeze-drying: the effects of residual moisture and gases. Cryobiology 8, 145-152 (1971).
60. Croyle, M.A., Cheng, X., Sandhu, A. & Wilson, J.M. Development of novel formulations that enhance adenoviral-mediated gene expression in the lung in vitro and in vivo. Mol Ther 4, 22-28 (2001).
61. Groner, A. Specificity and safety of baculoviruses. The Biology of Baculoviruses 1, 177~202 (1986).
62. Matilainen, H. et al. Baculovirus entry into human hepatoma cells. J Virol 79, 15452-15459 (2005).
63. Duisit, G. et al. Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. J Gene Med 1, 93-102 (1999).
64. Tani, H., Nishijima, M., Ushijima, H., Miyamura, T. & Matsuura, Y. Characterization of cell-surface determinants important for baculovirus infection. Virology 279, 343-353 (2001).
65. Long, G., Pan, X., Kormelink, R. & Vlak, J.M. Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis. J Virol 80, 8830-8833 (2006).
66. Laakkonen, J.P. et al. Clathrin-independent entry of baculovirus triggers uptake of E. coli in non-phagocytic human cells. PLoS One 4, e5093 (2009).
67. Salminen, M. et al. Improvement in nuclear entry and transgene expression of baculoviruses by disintegration of microtubules in human hepatocytes. J Virol 79, 2720-2728 (2005).
68. Kukkonen, S.P. et al. Baculovirus capsid display: a novel tool for transduction imaging. Mol Ther 8, 853-862 (2003).
69. Grant, S. Is the focus moving toward a combination of targeted drugs? Best Pract Res Clin Haematol 21, 629-637 (2008).
70. Lo, H.R., Chou, C.C., Wu, T.Y., Yuen, J.P. & Chao, Y.C. Novel baculovirus DNA elements strongly stimulate activities of exogenous and endogenous promoters. J Biol Chem 277, 5256-5264 (2002).
71. Zorko, M. & Langel, U. Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57, 529-545 (2005).
72. Schwarze, S.R. & Dowdy, S.F. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol Sci 21, 45-48 (2000).
73. Ziady, A.G. et al. Ligand substitution of receptor targeted DNA complexes affects gene transfer into hepatoma cells. Gene Ther 5, 1685-1697 (1998).
74. Kim, D. et al. Cytoplasmic transduction peptide (CTP): new approach for the delivery of biomolecules into cytoplasm in vitro and in vivo. Exp Cell Res 312, 1277-1288 (2006).
75. Vives, E., Brodin, P. & Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272, 16010-16017 (1997).
76. Lee, J.C. & Chao, Y.C. Apoptosis resulting from superinfection of Heliothis zea virus 1 is inhibited by p35 and is not required for virus interference. J Gen Virol 79 ( Pt 9), 2293-2300 (1998).
77. Lo, H.R. & Chao, Y.C. Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol Prog 20, 354-360 (2004).
78. Ho, Y., Lin, P.H., Liu, C.Y., Lee, S.P. & Chao, Y.C. Assembly of human severe acute respiratory syndrome coronavirus-like particles. Biochem Biophys Res Commun 318, 833-838 (2004).
79. Lin, C.L. et al. Persistent Hz-1 virus infection in insect cells: evidence for insertion of viral DNA into host chromosomes and viral infection in a latent status. J Virol 73, 128-139 (1999).
80. Li, L., Wang, X., Yin, J. & Zhong, J. Tat transduction peptide displayed on the nucleocapsid improved the baculovirus transduction of mammalian cells. Sheng Wu Gong Cheng Xue Bao 25, 1558-1563 (2009).
81. Mahonen, A.J. et al. Post-transcriptional regulatory element boosts baculovirus-mediated gene expression in vertebrate cells. J Biotechnol 131, 1-8 (2007).