簡易檢索 / 詳目顯示

研究生: 吳東烜
Wu, Dong-Syuan
論文名稱: 平面雙蝴蝶連桿機構之無缺陷尺度合成
Defect-Free Dimensional Synthesis of Planar Double Butterfly Linkages
指導教授: 黃文敏
Hwang, Wen-Miin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 平面八連桿組雙蝴蝶機構尺度合成順序缺陷迴路缺陷分支缺陷
外文關鍵詞: planar eight-bar linkage, bouble butterfly mechanism, dimensional synthesis, order defect, circuit defect, branch defect
相關次數: 點閱:67下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 十六個平面八連桿組中,僅雙蝴蝶連桿組不含子四連桿組,其任何倒置機構皆屬無閉合解機構,為構造最複雜之八桿機構,而此機構之尺度合成也是最難處理之問題。在平面連桿機構的尺度合成過程中,常發生順序、迴路與分支缺陷等問題,為了合成可用之無缺陷機構,須先探討各機構發生順序、迴路與分支缺陷之原因,進而建立其避開缺陷之限制式,於尺度合成的過程中剔除有缺陷之機構。本文之目的在於探討平面八連桿雙蝴蝶機構之無缺陷尺度合成,所提出之方法可適用於函數機構、路徑演生機構以及剛體導引機構之尺度合成。
    針對各型平面八連桿雙蝴蝶機構的構造,本文首先根據已知條件──輸入桿及輸出桿之需求角位置,提出一套獨立迴路篩選法則,選擇出最適當的三個獨立迴路。再以此三個獨立迴路的位移方程式,透過變數消去與轉換,以及輸出桿拆解之方法,來求得演生機構輸出桿角位置與耦桿點位置之顯函數表示式。由於演生機構之輸出桿角位置或耦桿點位置,會與原輸出桿之需求角位置或耦桿點位置存在誤差值,求得此誤差值之方均根並無因次化後,即可建立最佳化尺度合成之目標函數。另外,並藉由探討雙蝴蝶機構之相鄰分支與死點之Jacobian值,歸納出避開順序、迴路與分支缺陷之限制式。然後,將目標函數配合所歸納出之避開缺陷限制式,以SQP最佳化方法進行尺度合成,得到符合設計需求之無缺陷機構。其中,最佳化尺度合成所需之初始值,本文提出一套幾何作圖法來提供。
    本文針對各種不同設計問題,利用上述方法推導出各型雙蝴蝶機構最佳化尺度合成所需之目標函數,並以範例驗證其正確性。藉由範例之結果可得知,以本文提出之方法所合成出之機構,不僅能夠達成所給定之設計需求,且在運動過程中亦能夠確實地避開各類缺陷問題。

    The double butterfly linkage is the only eight-bar linkage without any four-bar loops. Each inversion of the linkage is a complex non-dyadic mechanism which is difficult to deal with its dimensional synthesis. Order, circuit, and branch defects are frequently encountered in the dimensional synthesis of linkages. In order to obtain mechanisms without defects, it is necessary to investigate the causes for occurring dead-center, order defects, circuit defects, and branch defects for each mechanism, and then propose suitable constraint equations for avoiding defects in the dimensional synthesis processes. The main purpose of this thesis is to propose a unified method for the defect-free dimensional synthesis of planar double butterfly linkages for function generation, motion generation and path generation.
    For each double butterfly linkage, a selective methodology is proposed for choosing three suitable independent loops according to the specified input and output variables. The explicit equations relating the generated output variables and coupler point positions are then derived by eliminating and transforming some angular variables in the three independent loops and by separating the output link into two links. The objective function of the optimal synthesis is defined as the dimensionless root mean square of deviation of the angular positions of the output link and/or the coupler point positions between the generated output and required positions. The Jacobian limit of each double butterfly linkage is used as the constraint equation for avoiding order, circuit, and branch defects in the optimal synthesis. Thus, defect-free mechanisms can be synthesized by using the Sequential Quadratic Programming method. Furthermore, the thesis uses a geometric approach for obtaining the initial values of design parameters for the optimal synthesis.
    For different design problems, this thesis provides several examples to demonstrate the feasibility of the proposed method. The results of the examples show that the synthesized mechanisms not only satisfy the design requirements but also avoid defect problems.

    摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 前言 1 1-1 研究動機 1 1-2 文獻回顧 4 1-3 研究目的與方法 6 1-4 論文架構 7 第二章 第一型雙蝴蝶機構之無缺陷尺度合成 9 2-1 獨立迴路之選擇 9 2-2 第一型雙蝴蝶函數機構 15 2-2-1 第一型雙蝴蝶函數機構最佳化尺度合成之目標函數 15 2-2-2 第一型雙蝴蝶函數機構最佳化尺度合成之限制式 20 2-3 第一型雙蝴蝶剛體導引機構及路徑演生機構 24 2-4 本章結論 30 第三章 第二型雙蝴蝶機構之無缺陷尺度合成 32 3-1 第二型雙蝴蝶函數機構 32 3-1-1 輸入桿為雙接頭桿之第二型雙蝴蝶函數機構 33 3-1-2 輸入桿為參接頭桿之第二型雙蝴蝶函數機構 40 3-2 第二型雙蝴蝶剛體導引機構及路徑演生機構 46 3-2-1 輸入桿為雙接頭桿之第二型雙蝴蝶剛體導引機構及路徑演生機構 46 3-2-2 輸入桿為參接頭桿之第二型雙蝴蝶剛體導引機構及路徑演生機構 53 3-3 本章結論 59 第四章 雙蝴蝶機構最佳化尺度合成範例 61 4-1 雙蝴蝶機構最佳化尺度合成之初始值 61 4-1-1 第一型雙蝴蝶機構 61 4-1-2 第二型雙蝴蝶機構 66 4-2 雙蝴蝶函數機構之最佳化尺度合成範例 71 4-3 雙蝴蝶剛體導引機構之最佳化尺度合成範例 82 4-4 本章結論 90 第五章 結論與建議 95 參考文獻 98

    01. Krishnamurty, S. and Turcic, D. A., 1988, “A General Method of Determining and Eliminating Branching in Planar Multiloop Mechanisms,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 100, pp. 412-422.
    02. Krishnamurty, S. and Turcic, D. A., 1992, “Branching Determination in Nondyadic Planar Multiloop Mechanisms,” ASME Transactions, Journal of Mechanical Design, Vol. 114, pp. 245-250.
    03. Angeles, J. and Rojas, A., 1983, “An Optimization Approach to the Branching Problem of Plane Linkage Synthesis,” Proceedings of the Sixth World Congress on Theory of Machines and Mechanisms, New Delhi, India, pp. 120-123.
    04. Watanabe, K. and Funabashi, H., 1984, “Kinematic Analysis of Stephenson’s Six-Link Mechanisms,” Bulletin of JSME, Vol. 27, No. 234, pp. 2863-2870.
    05. Tinubu, S. O. and Gupta, K. C.,1984, “Optimal Synthesis of Function Generators without the Branch Defect,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 106, pp. 348-354.
    06. Yan, H. S. and Chiou, S. T., 1987, “An Algorithm for the Optimal Synthesis of Complex Function Generations,” Engineering Optimization, Vol. 12, pp. 75-88.
    07. 車慧中,1991,平面六連桿與空間四連桿機構分支問題之研究,碩士論文,國立成功大學機械工程學系,台南。
    08. Liu, Z. and Angeles, J., 1992, “The Properties of Constant-Branch Four-Bar Linkages and Their Applications,” ASME Transactions, Journal of Mechanical Design, Vol. 114, pp. 574-579.
    09. Chase, T. R. and Mirth, J. A., 1993, “Circuits and Branches of Single Degree-of-Freedom Planar Linkages,” ASME Transactions, Journal of Mechanical Design, Vol. 115, pp. 223-230.
    10. Waldron, K. J. and Sreenivasan, S. V., 1996, “A Study of the Solvability of the Position Problem for Multi-Circuit Mechanisms by Way of Example of the Double Butterfly Linkage,” ASME Transactions, Journal of Mechanical Design, Vol. 118, pp. 390-395.
    11. Bawab, S., Kinzel, G. L., and Waldron, K. J., 1996, “Rectified Synthesis of Six-Bar Mechanisms with Well-Defined Transmission Angles for Four-Position Motion Generation,” ASME Transactions, Journal of Mechanical Design, Vol. 118, pp. 377-383.
    12. Neilson, J. and Roth, B., 1999, “Solving the Input/Output Problem for Planar Mechanism,” ASME Transactions, Journal of Mechanical Design, Vol. 121, pp. 206-211.
    13. Wampler, C. W., Morgan, A. P., and Sommese, A. J., 1990, “Numerical Methods for Solving Polynomial Systems Arising in Kinematics,” ASME Transactions, Journal of Mechanical Design, Vol. 112, pp. 59-68.
    14. Wampler, C. W., 1999, “Solving the Kinematics of Planar Mechanisms,” ASME Transactions, Journal of Mechanical Design, Vol. 121, pp. 387-391.
    15. Wampler, C. W., 2001, “Solving the Kinematics of Planar Mechanisms by Dixon Determinant and a Complex-Plane Formulation,” ASME Transactions, Journal of Mechanical Design, Vol. 123, pp. 382-387.
    16. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2000, “A Gröbner-Sylvester Hybrid Method for Closed-Form Displacement Analysis of Mechanisms,” ASME Transactions, Journal of Mechanical Design, Vol. 122, pp. 431-438.
    17. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2000, “Closed-Form Displacement Analysis of 8, 9 and 10-Link Mechanisms: Part I – 8-Link 1-DOF Mechanisms,” Mechanism and Machine Theory, Vol. 35, pp. 821-850.
    18. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2000, “Closed-Form Displacement Analysis of 8, 9 and 10-Link Mechanisms: Part II – 9-Link 2-DOF and 10-Link 3-DOF Mechanisms,” Mechanism and Machine Theory, Vol. 35, pp. 851-869.
    19. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2001, “Closed-Form Displacement Analysis of 10-Link 1-DOF Mechanisms: Part I – General Framework,” Mechanism and Machine Theory, Vol. 36, pp. 29-56.
    20. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2001, “Closed-Form Displacement Analysis of 10-Link 1-DOF Mechanisms: Part II – Polynomial Solutions,” Mechanism and Machine Theory, Vol. 35, pp. 57-75.
    21. Dhingra, A. K., Almadi, A. N., and Kohli, D., 2001, “Closed-Form Displacement and Coupler Curve Analysis of Planar Multi-Loop Mechanisms Using Gröbner Bases,” Mechanism and Machine Theory, Vol. 35, pp. 273-298.
    22. Pennock, G. R. and Hasan, A., 2002, “A Polynomial Equation for a Coupler Curve of the Double Butterfly Linkage,” ASME Transactions, Journal of Mechanical Design, Vol. 124, pp. 39-46.
    23. Balli, S. S. and Chand, S., 2002, “Defects in Link Mechanisms and Solution Rectification,” Mechanism and Machine Theory, Vol. 37, pp. 851-876.
    24. 柯平山,2002,平面四連桿和六連桿機構迴路與分支之辨識,碩士論文,國立成功大學機械工程學系,台南。
    25. Sommese, A. J., Verschelde, J., and Wampler, C. W., 2004, “Advances in Polynomial Continuation for Solving Problems in Kinematics,” ASME Transactions, Journal of Mechanical Design, Vol. 126, pp. 262-268.
    26. Watanabe, K. and Katoh, H., 2004, “Identification of Motion Domains of Planar Six-Link Mechanisms of the Stephenson-Type,” Mechanism and Machine Theory, Vol. 39, pp. 1081-1099.
    27. Foster, D. E. and Cipra, R. J., 2006, “Assembly Configurations of Planar Multi-Loop Mechanisms with Kinematic Limitations,” ASME Transactions, Journal of Mechanical Design, Vol. 128, pp. 747-754.
    28. Tsai, C. C. and Wang, L. C. T., 2006, “On the Dead-Center Position Analysis of Stephenson Six-Link Linkages,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 220, pp. 1393-1404.
    29. Tsai, C. C. and Wang, L. C. T., 2006, “Branch Identification and Motion Domain Analysis of Stephenson Type Six-Bar Linkages,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 221, pp. 589-604.
    30. Porta, J. M., Ros, L., Creemers, T., and Thomas, F., 2007, “Box Approximations of Planar Linkage Configuration Spaces,” ASME Transactions, Journal of Mechanical Design, Vol. 129, pp. 397-405.
    31. Hwang, W. M. and Chen, Y. J., 2008, “Defect-Free Synthesis of Stephenson-Ⅲ Motion Generators,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 222, pp. 2485-2494.
    32. Hwang, W. M. and Chen, Y. J., 2009, “Defect-Free Synthesis of Watt-I Mechanisms for Motion Generation,” Journal of the Chinese Society of Mechanical Engineers, Vol. 30, No. 3, pp. 173-180.
    33. Hwang, W. M. and Chen, Y. J., 2010, “Defect-Free Synthesis of Stephenson-Ⅱ Function Generators,” ASME Transactions, Journal of Mechanisms and Robotics, Vol. 2. No. 4., pp. 041012-1-041012-7.
    34. Fahey, S. O’F. and Huston, D. R., 1997, “A Novel Automotive Steering Linkage,” ASME Transactions, Journal of Mechanical Design, Vol. 119, pp. 481-484.

    下載圖示 校內:2016-08-23公開
    校外:2016-08-23公開
    QR CODE