簡易檢索 / 詳目顯示

研究生: 蕭名雯
Hsiao, Ming-Wen
論文名稱: 氮化銦鎵摻雜錳應用於太陽能電池之研究
Studies of Mn-doped InGaN Applied to Solar Cells
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: 氮化銦鎵摻雜錳中間能帶太陽能電池
外文關鍵詞: Mn-doped InGaN, intermediate band, solar cells
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是以有機金屬氣相磊晶法成長出氮化銦鎵摻雜錳的材料,並且針對其材料特性進行分析以及元件特性的探討。在材料分析方面,我們利用X光繞射、穿透、低溫光致螢光、電傳輸特性對氮化銦鎵摻雜錳進行材料結晶品質以及光電特性分析,並且推測出於氮化銦鎵材料中摻雜過鍍金屬錳之後,造成材料品質降低,使原本預期形成的中間能帶並沒有形成,而是形成雜質能帶。元件應用上,將其材料製作成太陽能電池,配合穿透頻譜、量測外部量子效應以及雙光源外部量子效應證實出錳雜質能帶具有中間能帶的吸收特性,是可以增加長波長的吸收,但是在太陽能參數的量測上並沒有展現出中間能帶高短路電流增幅的特性,反而短路電流下降以及光電轉換效率降低,其推測原因為於氮化銦鎵材料中摻雜錳之後造成材料品質降低以及提高了串聯電阻。實驗結果與分析將於本論文中詳加探討。

    InGaN alloys has been predicted that a full-solar-spectrum material system could be achieved by the confirmation of InN with its energy band gap around 0.7 eV. With the combination of InXGa1-XN alloy systems, one may theoretically design tandem photovoltaic devices with optimum band gaps to absorb photon energy between 0.7 eV of infrared and 3.4 eV of ultraviolet regions. In this study, Mn-doped InGaN materials were grown by metalorganic vapor phase epitaxy, and their characterization and properties studied. By using X-ray, transmittance, photoluminescence and electrical properties, the Mn-doped InGaN-based materials and devices were studied.
    We conjecture that the poor quality of Mn-doped InGaN-based materials were attributed to Mn-relative impurity states in the materials. We fabricated the Mn-doped InGaN-based solar cells device in this research. The measurements of transmittance spectrum, relative external quantum efficiency and two photons external quantum efficiency showed the presence of an Mn-relative impurity states that appeared to be intermediate band absorption property, but the efficiency, Voc, Jsc, FF decreased due to the poor quality of Mn-doped InGaN material and high series resistance. Further details of the finding will be discussed in the dissection.

    摘要I AbstractII 誌謝III 目錄IV 表目錄VIII 圖目錄IX 第一章 序論1 1.1前言 1 1.2氮化銦鎵太陽能電池簡介2 1.3中間能帶太陽能電池3 1.4研究動機5 第二章 基礎理論介紹 7 2.1氮化鎵晶體結構7 2.2氮化銦鎵材料9 2.3電子能帶結構9 2.4中間能帶太陽能電池(Intermediate band solar cell)12 2.4.1氮化鎵摻雜錳之中間能帶太陽能電池13 2.4.2氮化銦鎵摻雜錳之中間能帶太陽能電池15 2.5太陽能電池簡介16 2.5.1空氣質量(Air mass)與輻射照度(Irradiance)16 2.5.2太陽能電池基本原理18 2.5.3 p-n接面二極體19 2.5.4 p-i-n接面二極體21 2.6太陽能電池特性與效率22 2.6.1理想化等效電路模型與電流-電壓特性22 2.6.2非理想等效電路模型與電流-電壓特性24 2.7太陽能電池電性參數25 2.7.1開路電壓(Open voltage,Voc)26 2.7.2短路電流(Short circuit current,Isc)26 2.7.3填充因子(Fill Factor,FF)與光電轉換效率(Energy conversion efficiency,η)27 2.7.4頻譜響應(Spectral responsivity,SR(λ))28 2.7.5外部量子效應(External quantum efficiency,EQE)與內部量子效應(Internal quantum efficiency,IQE)28 2.7.6串聯電阻(Rs)與並聯電阻(Rsh)對太陽能電池電性之影響29 第三章 元件製程步驟與量測34 3.1氮化銦鎵摻雜錳之中間能帶太陽能電池34 3.1.1主動層為氮化銦鎵摻雜錳之中間能帶太陽能電池結構34 3.1.2氮化銦鎵摻雜錳之中間能帶太陽能電池製程步驟35 3.2量測儀器介紹42 3.2.1太陽光模擬器42 3.2.2外部量子效應量測系統42 3.2.3雙光源量測外部效應系統43 第四章 量測結果分析與討論45 4.1 氮化銦鎵摻雜錳之材料分析45 4.1.1 XRD與穿透量測與分析45 4.1.2低溫光致螢光(PL)分析48 4.2 氮化銦鎵摻雜錳之太陽能電池元件量測分析與討論 50 4.2.1 TLM(Transmission line model,TLM)量測與分析50 4.2.2順向偏壓與漏電流量測與分析54 4.2.3太陽能電池光電轉換之特性分析56 4.2.4電致螢光(EL)分析59 4.2.5外部量子效率(EQE)量測結果與分析61 4.2.6雙光源外部量子效率(EQE)量測結果與分析62 第五章 結論與未來展望65 5.1總結65 5.2未來工作66 Reference 68 Publication List 73 表目錄 表4-1 Mn0、Mn10之n、p型電極之接觸電阻與片電阻53 表4-2 Mn0、Mn10於太陽光AM1.5G照光下之太陽能電池參數56 圖目錄 圖1-1氮化銦鎵材料之合金系統示意圖3 圖1-2 Intermediate band 太陽能電池能帶示意圖 4 圖1-3氮化鎵摻雜錳能帶示意圖6 圖1-4 In1-xGaxN摻雜錳之中間能帶太陽能電池理論效率6 圖2-1(a)烏采(Wurtzite)結構圖(b)閃鋅礦(Zincblende)結構圖7 圖2-2 氫分子軌域(σ1s為鍵結分子軌域,σ1s*為反鍵結分子軌域)10 圖2-3能帶的形成10 圖2-4能帶分裂圖11 圖2-5半導體能帶圖11 圖2-6 Intermediate band 能帶示意圖 12 圖2-7中間能帶與單一能隙太陽能電池理論效率13 圖2-8 氮化鎵摻雜錳之低溫PL量測圖14 圖2-9氮化鎵摻雜錳能帶示意圖14 圖2-10氮化鎵摻雜錳能帶示意圖 16 圖2-11太陽光譜輻射照度對波長之關係圖17 圖2-12空氣質量示意圖18 圖2-13 (a)p-n接面半導體(b)p-n接面太陽能電池能帶示意圖21 圖2-14 (a) p、本質與n型半導體能帶圖(b)熱穩定的p-i-n介面能帶圖22 圖2-15理想太陽能電池等效電路圖24 圖2-16非理想太陽能電池等效電路圖25 圖2-17寄生串聯電阻對太陽能電池電流電壓的影響32 圖2-18寄生並聯電阻對太陽能電池電流電壓的影響33 圖2-19短路電流密度與開路電壓關係曲線圖 33 圖3-1(a) 試片Mn0之太陽能電池結構圖34 圖3-1(b) 試片Mn10之太陽能電池結構圖35 圖3-2 試片Mn0、Mn10太陽能電池製程步驟流程圖41 圖3-3量測外部量子效率儀器架設圖43 圖3-4量測雙光子外部量子效率儀器架設圖44 圖4-1 Mn0、Mn10之XRD圖46 圖4-2 (a)Mn0、Mn10穿透率量測結果47 圖4-2 (b) Mn0、Mn10於波長300nm~600nm穿透率量測47 圖4-2 (c) Mn0、Mn10於波長700nm~900nm穿透率量測48 圖4-3 Mn0、Mn10使用波長325nm雷射低溫PL量測圖49 圖4-4 Mn0、Mn10使用波長488nm雷射之低溫PL量測圖50 圖4-5(a) Mn0、Mn10之n型電極TLM電壓電流曲線圖52 圖4-6 (a) Mn0、(b)Mn10之SIMS量測圖 54 圖4-7 Mn0、Mn10於暗態下順向偏壓電流電壓曲線圖55 圖4-8 Mn0、Mn10於暗態下逆向偏壓電流電壓曲線圖55 圖4-9 Mn0、Mn10於太陽光AM1.5G照光下電流密度與電壓曲線圖 56 圖4-10(a) Mn0注入電流150mA之EL頻譜量測與元件發光圖60 圖4-10(b) Mn10注入電流150mA之EL頻譜量測與元件發光圖60 圖4-11 Mn0、Mn10之EQE量測圖62 圖4-12 Mn0、Mn10之雙光子量測圖64

    [1]J. Nelson, "The Physics of Solar Cells, " Imperial College Press, Lodon, 2003.
    [2]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, et al., "Unusual properties of the fundamental band gap of InN," Appl. Phys. Lett., vol. 80, pp. 3967-3969, 2002.
    [3]A. Luque and A. Martí, "Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels," Phys. Rev. Lett., vol. 78, pp. 5014-5017, 1997.
    [4]A. Luque, A. Martí, and L. Cuadra, "Thermodynamic consistency of sub-bandgap absorbing solar cell proposals," Ieee T Electron Dev, vol. 48, pp. 2118-2124, 2001.
    [5]A. Luque, A. Martí, C. Stanley, N. Lopez, L. Cuadra, D. Zhou, et al., "General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence," J. Appl. Phys., vol. 96, pp. 903-909, 2004.
    [6]L. Cuadra, A. Martı́, and A. Luque, "Present status of intermediate band solar cell research," Thin Solid Films, vol. 451–452, pp. 593-599, 2004.
    [7]M. Ley, J. Boudaden, and Z. T. Kuznicki, "Thermodynamic efficiency of an intermediate band photovoltaic cell with low threshold Auger generation," J. Appl. Phys., vol. 98, pp. 044905-5, 2005.
    [8]A. Luque, A. Martí, E. Antolin, and C. Tablero, "Intermediate bands versus levels in non-radiative recombination," Physica B-Condensed Matter, vol. 382, pp. 320-327, 2006.
    [9]A. Luque, A. Martí, N. López, E. Antolin, E. Canovas, C. Stanley, et al., "Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band," J. Appl. Phys., vol. 99, pp. 094503-9, 2006.
    [10]A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, et al., "Production of Photocurrent due to Intermediate -to- Conduction- Band Transitions: A Demonstration of a Key Operating Principle of the Intermediate-Band Solar Cell," Phys. Rev. Lett., vol. 97, p. 247701, 2006.
    [11]A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, et al., "Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells," Appl. Phys. Lett., vol. 87, pp. 083505-3, 2005.
    [12]E. Antolín, A. Martí, C. R. Stanley, C. D. Farmer, E. Cánovas, N. López, et al., "Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell," Thin Solid Films, vol. 516, pp. 6919-6923, 2008.
    [13]A. Luque, A. Martí, E. Antolin, P. G. Linares, I. Tobias, I. Ramiro, et al., "New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells," Sol. Energy Mater. Sol. Cells, vol. 95, pp. 2095-2101, 2011.
    [14]A. Luque, A. Martí, E. Antolín, P. G. Linares, I. Tobías, and I. Ramiro, "Radiative thermal escape in intermediate band solar cells," Aip Advances, vol. 1, pp. 022125-6, 2011.
    [15]K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, et al., "Diluted II-VI oxide semiconductors with multiple band gaps," Phys. Rev. Lett., vol. 91, p. 246403, 2003.
    [16]K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, et al., "Multiband GaNAsP quaternary alloys," Appl. Phys. Lett., vol. 88, pp. 092110-3, 2006.
    [17]N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, "Engineering the Electronic Band Structure for Multiband Solar Cells," Phys. Rev. Lett., vol. 106, pp. 028701, 2011.
    [18]C. Tablero, "Survey of intermediate band materials based on ZnS and ZnTe semiconductors," Sol. Energy Mater. Sol. Cells, vol. 90, pp. 588-596, 2006.
    [19]W. M. Wang, A. S. Lin, and J. D. Phillips, "Intermediate-band photovoltaic solar cell based on ZnTe:O," Appl. Phys. Lett., vol. 95, pp. 011103, 2009.
    [20]R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, "Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy," Physica B-Condensed Matter, vol. 308, pp. 30-33, 2001.
    [21]R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, "Optical properties of the deep Mn acceptor in GaN : Mn," Appl. Phys. Lett., vol. 80, pp. 1731-1733, 2002.
    [22]A. Martí, C. Tablero, E. Antolín, A. Luque, R. P. Campion, S. V. Novikov, et al., "Potential of Mn doped In1−xGaxN for implementing intermediate band solar cells," Sol. Energy Mater. Sol. Cells, vol. 93, pp. 641-644, 2009.
    [23]J. Olea, M. Toledano-Luque, D. Pastor, G. Gonzalez-Diaz, and I. Martil, "Titanium doped silicon layers with very high concentration," J. Appl. Phys., vol. 104, pp. 016105-3, 2008.
    [24]N. Nepal, A. M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, "Correlation between photoluminescence and magnetic properties of GaMnN films," Appl. Phys. Lett., vol. 91, pp. 242502-3, 2007.
    [25]黃惠良, 曾百亨, "太陽電池," 五南圖書出版, 2008.
    [26]黃鋒文, "非極性氮化銦鎵/氮化鎵材料與元件光電特性之探討,"國立成功大學光電科學與工程研究所,碩士論文, 2008.
    [27]A. Luque and S. Hegedus, "Handbook of Photovoltaic Science and Engineering," Wiley, England, 2002.
    [28]D. A. Neamen, "Semiconductor Physics & Devices, " Third edition, Mcgraw Hill, 2003.
    [29]A. Luque, A. Martí, and C. Stanley, "Understanding intermediate-band solar cells," Nat Photon, vol. 6, pp. 146-152, 2012.
    [30]A. Luque and A. Martí, "The intermediate band solar cell: progress toward the realization of an attractive concept," Adv. Mater., vol. 22, pp. 160-74, 2010.
    [31]P. Boguslawski and J. Bernholc, "Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N," Physical Review B, vol. 72, pp. 115208, 2005.
    [32]X. G. Cui, Z. K. Tao, R. Zhang, X. Li, X. Q. Xiu, Z. L. Xie, et al., "Structural and magnetic properties in Mn-doped GaN grown by metal organic chemical vapor deposition," Appl. Phys. Lett., vol. 92, pp. 152116-3, 2008.
    [33]T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, "The Mn 3+/2+ acceptor level in group III nitrides," Appl. Phys. Lett., vol. 81, pp. 5159-5161, 2002.
    [34]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager Iii, E. E. Haller, H. Lu, et al., "Small band gap bowing in In1 - xGaxN alloys," Appl. Phys. Lett., vol. 80, pp. 4741-4743, 2002.
    [35]J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, et al., "Effects of electron concentration on the optical absorption edge of InN," Appl. Phys. Lett., vol. 84, pp. 2805-2807, 2004.
    [36]M. A. Reshchikov and H. Morkoc, "Luminescence properties of defects in GaN," J. Appl. Phys., vol. 9, 2005.
    [37]黃鋒文, "氮化鎵系列摻雜錳之材料特性與元件應用,"國立成功大學光電科學與工程學系,博士論文, 2012.

    下載圖示 校內:2016-07-19公開
    校外:2016-07-19公開
    QR CODE