| 研究生: |
蕭名雯 Hsiao, Ming-Wen |
|---|---|
| 論文名稱: |
氮化銦鎵摻雜錳應用於太陽能電池之研究 Studies of Mn-doped InGaN Applied to Solar Cells |
| 指導教授: |
許進恭
Sheu, Jinn-Kong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 氮化銦鎵摻雜錳 、中間能帶 、太陽能電池 |
| 外文關鍵詞: | Mn-doped InGaN, intermediate band, solar cells |
| 相關次數: | 點閱:107 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是以有機金屬氣相磊晶法成長出氮化銦鎵摻雜錳的材料,並且針對其材料特性進行分析以及元件特性的探討。在材料分析方面,我們利用X光繞射、穿透、低溫光致螢光、電傳輸特性對氮化銦鎵摻雜錳進行材料結晶品質以及光電特性分析,並且推測出於氮化銦鎵材料中摻雜過鍍金屬錳之後,造成材料品質降低,使原本預期形成的中間能帶並沒有形成,而是形成雜質能帶。元件應用上,將其材料製作成太陽能電池,配合穿透頻譜、量測外部量子效應以及雙光源外部量子效應證實出錳雜質能帶具有中間能帶的吸收特性,是可以增加長波長的吸收,但是在太陽能參數的量測上並沒有展現出中間能帶高短路電流增幅的特性,反而短路電流下降以及光電轉換效率降低,其推測原因為於氮化銦鎵材料中摻雜錳之後造成材料品質降低以及提高了串聯電阻。實驗結果與分析將於本論文中詳加探討。
InGaN alloys has been predicted that a full-solar-spectrum material system could be achieved by the confirmation of InN with its energy band gap around 0.7 eV. With the combination of InXGa1-XN alloy systems, one may theoretically design tandem photovoltaic devices with optimum band gaps to absorb photon energy between 0.7 eV of infrared and 3.4 eV of ultraviolet regions. In this study, Mn-doped InGaN materials were grown by metalorganic vapor phase epitaxy, and their characterization and properties studied. By using X-ray, transmittance, photoluminescence and electrical properties, the Mn-doped InGaN-based materials and devices were studied.
We conjecture that the poor quality of Mn-doped InGaN-based materials were attributed to Mn-relative impurity states in the materials. We fabricated the Mn-doped InGaN-based solar cells device in this research. The measurements of transmittance spectrum, relative external quantum efficiency and two photons external quantum efficiency showed the presence of an Mn-relative impurity states that appeared to be intermediate band absorption property, but the efficiency, Voc, Jsc, FF decreased due to the poor quality of Mn-doped InGaN material and high series resistance. Further details of the finding will be discussed in the dissection.
[1]J. Nelson, "The Physics of Solar Cells, " Imperial College Press, Lodon, 2003.
[2]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, et al., "Unusual properties of the fundamental band gap of InN," Appl. Phys. Lett., vol. 80, pp. 3967-3969, 2002.
[3]A. Luque and A. Martí, "Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels," Phys. Rev. Lett., vol. 78, pp. 5014-5017, 1997.
[4]A. Luque, A. Martí, and L. Cuadra, "Thermodynamic consistency of sub-bandgap absorbing solar cell proposals," Ieee T Electron Dev, vol. 48, pp. 2118-2124, 2001.
[5]A. Luque, A. Martí, C. Stanley, N. Lopez, L. Cuadra, D. Zhou, et al., "General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence," J. Appl. Phys., vol. 96, pp. 903-909, 2004.
[6]L. Cuadra, A. Martı́, and A. Luque, "Present status of intermediate band solar cell research," Thin Solid Films, vol. 451–452, pp. 593-599, 2004.
[7]M. Ley, J. Boudaden, and Z. T. Kuznicki, "Thermodynamic efficiency of an intermediate band photovoltaic cell with low threshold Auger generation," J. Appl. Phys., vol. 98, pp. 044905-5, 2005.
[8]A. Luque, A. Martí, E. Antolin, and C. Tablero, "Intermediate bands versus levels in non-radiative recombination," Physica B-Condensed Matter, vol. 382, pp. 320-327, 2006.
[9]A. Luque, A. Martí, N. López, E. Antolin, E. Canovas, C. Stanley, et al., "Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band," J. Appl. Phys., vol. 99, pp. 094503-9, 2006.
[10]A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, et al., "Production of Photocurrent due to Intermediate -to- Conduction- Band Transitions: A Demonstration of a Key Operating Principle of the Intermediate-Band Solar Cell," Phys. Rev. Lett., vol. 97, p. 247701, 2006.
[11]A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. Stanley, et al., "Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells," Appl. Phys. Lett., vol. 87, pp. 083505-3, 2005.
[12]E. Antolín, A. Martí, C. R. Stanley, C. D. Farmer, E. Cánovas, N. López, et al., "Low temperature characterization of the photocurrent produced by two-photon transitions in a quantum dot intermediate band solar cell," Thin Solid Films, vol. 516, pp. 6919-6923, 2008.
[13]A. Luque, A. Martí, E. Antolin, P. G. Linares, I. Tobias, I. Ramiro, et al., "New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells," Sol. Energy Mater. Sol. Cells, vol. 95, pp. 2095-2101, 2011.
[14]A. Luque, A. Martí, E. Antolín, P. G. Linares, I. Tobías, and I. Ramiro, "Radiative thermal escape in intermediate band solar cells," Aip Advances, vol. 1, pp. 022125-6, 2011.
[15]K. M. Yu, W. Walukiewicz, J. Wu, W. Shan, J. W. Beeman, M. A. Scarpulla, et al., "Diluted II-VI oxide semiconductors with multiple band gaps," Phys. Rev. Lett., vol. 91, p. 246403, 2003.
[16]K. M. Yu, W. Walukiewicz, J. W. Ager, D. Bour, R. Farshchi, O. D. Dubon, et al., "Multiband GaNAsP quaternary alloys," Appl. Phys. Lett., vol. 88, pp. 092110-3, 2006.
[17]N. López, L. A. Reichertz, K. M. Yu, K. Campman, and W. Walukiewicz, "Engineering the Electronic Band Structure for Multiband Solar Cells," Phys. Rev. Lett., vol. 106, pp. 028701, 2011.
[18]C. Tablero, "Survey of intermediate band materials based on ZnS and ZnTe semiconductors," Sol. Energy Mater. Sol. Cells, vol. 90, pp. 588-596, 2006.
[19]W. M. Wang, A. S. Lin, and J. D. Phillips, "Intermediate-band photovoltaic solar cell based on ZnTe:O," Appl. Phys. Lett., vol. 95, pp. 011103, 2009.
[20]R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, "Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy," Physica B-Condensed Matter, vol. 308, pp. 30-33, 2001.
[21]R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, "Optical properties of the deep Mn acceptor in GaN : Mn," Appl. Phys. Lett., vol. 80, pp. 1731-1733, 2002.
[22]A. Martí, C. Tablero, E. Antolín, A. Luque, R. P. Campion, S. V. Novikov, et al., "Potential of Mn doped In1−xGaxN for implementing intermediate band solar cells," Sol. Energy Mater. Sol. Cells, vol. 93, pp. 641-644, 2009.
[23]J. Olea, M. Toledano-Luque, D. Pastor, G. Gonzalez-Diaz, and I. Martil, "Titanium doped silicon layers with very high concentration," J. Appl. Phys., vol. 104, pp. 016105-3, 2008.
[24]N. Nepal, A. M. Mahros, S. M. Bedair, N. A. El-Masry, and J. M. Zavada, "Correlation between photoluminescence and magnetic properties of GaMnN films," Appl. Phys. Lett., vol. 91, pp. 242502-3, 2007.
[25]黃惠良, 曾百亨, "太陽電池," 五南圖書出版, 2008.
[26]黃鋒文, "非極性氮化銦鎵/氮化鎵材料與元件光電特性之探討,"國立成功大學光電科學與工程研究所,碩士論文, 2008.
[27]A. Luque and S. Hegedus, "Handbook of Photovoltaic Science and Engineering," Wiley, England, 2002.
[28]D. A. Neamen, "Semiconductor Physics & Devices, " Third edition, Mcgraw Hill, 2003.
[29]A. Luque, A. Martí, and C. Stanley, "Understanding intermediate-band solar cells," Nat Photon, vol. 6, pp. 146-152, 2012.
[30]A. Luque and A. Martí, "The intermediate band solar cell: progress toward the realization of an attractive concept," Adv. Mater., vol. 22, pp. 160-74, 2010.
[31]P. Boguslawski and J. Bernholc, "Fermi-level effects on the electronic structure and magnetic couplings in (Ga,Mn)N," Physical Review B, vol. 72, pp. 115208, 2005.
[32]X. G. Cui, Z. K. Tao, R. Zhang, X. Li, X. Q. Xiu, Z. L. Xie, et al., "Structural and magnetic properties in Mn-doped GaN grown by metal organic chemical vapor deposition," Appl. Phys. Lett., vol. 92, pp. 152116-3, 2008.
[33]T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, "The Mn 3+/2+ acceptor level in group III nitrides," Appl. Phys. Lett., vol. 81, pp. 5159-5161, 2002.
[34]J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager Iii, E. E. Haller, H. Lu, et al., "Small band gap bowing in In1 - xGaxN alloys," Appl. Phys. Lett., vol. 80, pp. 4741-4743, 2002.
[35]J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, et al., "Effects of electron concentration on the optical absorption edge of InN," Appl. Phys. Lett., vol. 84, pp. 2805-2807, 2004.
[36]M. A. Reshchikov and H. Morkoc, "Luminescence properties of defects in GaN," J. Appl. Phys., vol. 9, 2005.
[37]黃鋒文, "氮化鎵系列摻雜錳之材料特性與元件應用,"國立成功大學光電科學與工程學系,博士論文, 2012.