| 研究生: |
蕭賀方 Hsiao, He-Fang |
|---|---|
| 論文名稱: |
基礎隔震對房屋結構的耐震效益研究 |
| 指導教授: |
郭炎塗
Kuo, Yen-Twu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 基礎隔震 |
| 相關次數: | 點閱:61 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
隔震系統在世界各國已受到廣泛的應用,本研究中於是分析隔震結構物於集集大地震、嘉義大地震、以及花蓮大地震歷時下,結構非線性之行為,比較隔震結構與固定基礎結構所受之基礎剪力,以及上部結構之桿件彎曲韌性的差異,並且推論最具隔震效益的抗彎構架樓層高度。
本研究乃採用鋼筋混凝土構架,依據規範耐震設計基本精神,採用簡化設計法設計之,設計樓高為4、6、8、11、14、16、19、21樓。結構物的幾何邊界條件不考慮土壤與結構互制效應與P-Δ效應;力邊界條件採用集集大地震中,南投縣魚池鄉日月潭TCU084測站所測得,東西向的歷時資料,;嘉義大地震中,嘉義市蘭潭國小CHY046測站所測得,東西向的歷時資料;以及花蓮大地震中,花蓮縣秀林國中HWA047測站所測得,東西向的歷時資料。材料特性方面,上部結構採用【洪文岳 2001】所建議,為一完美彈塑性行為的結構桿件,並使用【Wen 1976】遲滯圈模式;隔震支承特性乃使用日本Bridgestone公司所製造的高阻尼橡膠支承。動力分析模式乃依集中質量(Lumped Mass)建立動力方程式,利用Ritz Vector模態分析及FNA(Fast Nonlinear Analysis)來求解,並使用結構設計分析軟體Sap2000執行分析。
分析結果顯示,對基層剪力比 而言,樓高為8樓至14樓之間,為較具隔震效益的樓高;對彎曲韌性比 而言,在樓高為8樓至11樓之間,為較具隔震效益的樓高。
none
參考文獻
1. ATC Report 10, “An Investigation of the Correlation Between Earthquake Ground Motion and Building Performance”, Applied Technology Council, Redwood City, California, 1982
2. B. Mohraz, F. E. Elghadamsi and C-J Chang, “An Incremental Mode-Superposition for Non-Linear Dynamic Analysis”, Earthquake Engineering and Structural Dynamics, Vol. 20, 471-481, 1991
3. B. A. Allred, L. J. Billings and R. Shepherd, “Ultimate Response Characteristics of Base Isolated Structures”, Eleventh World Conference on Earthquake Engineering, No. 1348, 1996
4. C. G. Koh and J. M. Kelly, “A Simple Mechanical Model for Elastomeric Bearings Used in Base Isolation”, International Journal of Mechanical Science, Vol. 30, No. 12, 933-943, 1988
5. C. G. Koh and T. Balendra, “Seismic Response of Base Isolated Buildings Including P-Δ Effects of Isolation Bearings”, Earthquake Engineering and Structural Dynamics, Vol. 18, 461-473, 1989
6. F. Naeim and J. M. Kelly, “Design of Seismic Isolated Structures: From Theory to Practice”, John Wiley & Sons, 1999
7. FEMA, “NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures”, Federal Emergency Management Agency (Report No. FEMA 302, 303), Washington, D. C., 1997
8. G-H Koo, J-H Lee, B. Yoo and Y. Ohtori, “Evaluation of Laminated Rubber Bearings for Seismic Isolation Using Modified Macro-Model with Parameter Equations of Instantaneous Apparent Shear Modulus”, Engineering Structures, Vol. 21, 594-602, 1999
9. H-C Tsai and J. M. Kelly, “Seismic Response of the Superstructure and Attached Equipment in a Base-Isolated Building”, Earthquake Engineering and Structural Dynamics, Vol. 18, 551-573, 1989
10. H-C Tsai and J. M. Kelly, “Seismic Response of Heavily Damped Base Isolation Systems”, Earthquake Engineering and Structural Dynamics, Vol. 22, 633-645, 1993
11. IBC, “International Building Code”, International Code Council, USA, 2000
12. J. M. Kelly, “Seismic Isolation as an Innovative Approach for the Protection of Engineered Structures”, Eleventh European Conference on Earthquake Engineering, 1998
13. M. F. Cruz A. and O. A. Lopez, “Plastic Energy Dissipated During an Earthquake as a Function of Structural Properties and Ground Motion Characteristics”, Engineering Structures, Vol. 22, 784-792, 2000
14. M. O. Moroni, M. Sarrazin and R. Boroschek, “Experiments on a Base-Isolated Building in Santiago, Chile”, Engineering Structures, Vol. 20, 720-725, 1998
15. M. Kikuchi and I. D. Aiken, “An Analytical Hysteresis Model for Elastomeric Seismic Isolation Bearings”, Earthquake Engineering and Structural Dynamics, Vol. 26, 215-231, 1997
16. P. P. Rossi, P. Lenza and M. Pagano, “Base Isolation Strategy for Frame Buildings”, Eleventh World Conference on Earthquake Engineering, No. 1345, 1996
17. P. R. Boardman and T. E. Kelly, “Base Isolation to Protect New Zealand’s Heritage”, Eleventh World Conference on Earthquake Engineering, No. 499, 1996
18. R. I. Skinner, J. M. Kelly and A. J. Heine, “Hysteretic Dampers for Earthquake-Resistant Structures”, Earthquake Engineering and Structural Dynamics, Vol. 3, 287-296, 1975
19. R. I. Skinner, W. H. Robinson and G. H. McVerry, “An Introduction to Seismic Isolation”, John Wiley & Sons, Chichester, 1993
20. S. K. Deb and D. K. Paul, “Simplified Non-Linear Analysis of Base Isolated Building”, Eleventh World Conference on Earthquake Engineering, No. 1344, 1996
21. S. Nagarajaiah, A. M. Reinhorn and M. C. Constantinou, “Nonlinear Dynamic Analysis of 3-D-Base-Isolated Structures”, Journal of Structural Engineering, ASCE, Vol. 117, No. 7, 2035-2054, 1991
22. S. Nagarajaiah and S. Xiaohong, “Response of Base-Isolated USC Hospital Building in Northridge Earthquake”, Journal of Structural Engineering, ASCE, Vol. 126, No. 10, 1177-1186, 2000
23. Sap2000, “Integrated Finite Element Analysis and Design of Structures: Analysis Reference”, Computers and Structures, Inc, Berkeley, California, USA, 1998
24. T-C Pan and G. Yang, “Nonlinear Analysis of Base-Isolated MDOF Structures”, Eleventh World Conference on Earthquake Engineering, No. 1534, 1996
25. T-C Pan and J. M. Kelly, “Seismic Response of Torsionally Coupled Base Isolated Structures”, Earthquake Engineering and Structural Dynamics, Vol. 11, 749-770, 1983
26. T-C Pan and J. M. Kelly, “Seismic Response of Base-Isolated Structures with Vertical-Rocking Coupling”, Earthquake Engineering and Structural Dynamics, Vol. 12, 681-702, 1984
27. W. H. Robinson, “Recent Research and Applications of Seismic Isolation in New Zealand”, Bulletin of the New Zealand National Society for Earthquake Engineering, Vol. 28, No. 4, 253-264, 1995
28. Y. J. Park, Y. K. Wen and A. H-S. Ang, “Random Vibration of Hysteretic Systems under Bi-Directional Ground Motions”, Earthquake Engineering and Structural Dynamics, Vol. 14, 543-557, 1986
29. Y. K. Wen, “Method for Random Vibration of Hysteretic Systems”, Journal of the Engineering Mechanics Division, ASCE, Vol. 102, No. EM2, April, 249-263, 1976
30. 洪文岳, “鋼筋混凝土抗彎構架系統之集集大地震非線性分析--探討耐震設計規範結構行為參數”, 2001