簡易檢索 / 詳目顯示

研究生: 蕭賀方
Hsiao, He-Fang
論文名稱: 基礎隔震對房屋結構的耐震效益研究
指導教授: 郭炎塗
Kuo, Yen-Twu
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 128
中文關鍵詞: 基礎隔震
相關次數: 點閱:61下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    隔震系統在世界各國已受到廣泛的應用,本研究中於是分析隔震結構物於集集大地震、嘉義大地震、以及花蓮大地震歷時下,結構非線性之行為,比較隔震結構與固定基礎結構所受之基礎剪力,以及上部結構之桿件彎曲韌性的差異,並且推論最具隔震效益的抗彎構架樓層高度。
    本研究乃採用鋼筋混凝土構架,依據規範耐震設計基本精神,採用簡化設計法設計之,設計樓高為4、6、8、11、14、16、19、21樓。結構物的幾何邊界條件不考慮土壤與結構互制效應與P-Δ效應;力邊界條件採用集集大地震中,南投縣魚池鄉日月潭TCU084測站所測得,東西向的歷時資料,;嘉義大地震中,嘉義市蘭潭國小CHY046測站所測得,東西向的歷時資料;以及花蓮大地震中,花蓮縣秀林國中HWA047測站所測得,東西向的歷時資料。材料特性方面,上部結構採用【洪文岳 2001】所建議,為一完美彈塑性行為的結構桿件,並使用【Wen 1976】遲滯圈模式;隔震支承特性乃使用日本Bridgestone公司所製造的高阻尼橡膠支承。動力分析模式乃依集中質量(Lumped Mass)建立動力方程式,利用Ritz Vector模態分析及FNA(Fast Nonlinear Analysis)來求解,並使用結構設計分析軟體Sap2000執行分析。
    分析結果顯示,對基層剪力比 而言,樓高為8樓至14樓之間,為較具隔震效益的樓高;對彎曲韌性比 而言,在樓高為8樓至11樓之間,為較具隔震效益的樓高。

    none

    目錄 摘要………………………………………………………………………..…I 誌謝………………………………………………………………...…….…. II 目錄……………………………………………………………………….…III 表目錄…………………………………………………………………….…VI 圖目錄……………………………………………………………………... VII 第一章 緒論 1.1 前言…………………………………………….…………………..…..1 1.2 文獻回顧…………………………………………………………….…2 1.3 研究動機與目的……………………………..……………………..….7 1.4 研究方法……………………………………………………………….8 第二章 隔震支承概述…………………………………...…………………9 第三章 傳統結構與隔震結構設計基礎剪力…………………………….14 3.1 傳統固定基礎結構…………………………………………………....14 3.2 隔震結構………………………………………………………………15 3.3 設計基礎剪力的比較…………………………………………………17 3.4 隔震結構設計基礎剪力的限制………………………………………17 第四章 分析模式………………………………………………………….19 4.1 Sap2000分析程式…………………………………………….………20 4.2 隔震支承遲滯圈模式…………………………………………………20 4.3 數學模式………………………………………………………………22 4.3.1 Ritz向量……………………………………….…….…….…22 4.3.2 FNA法 [Fast Nonlinear Analysis]………………………...…24 4.3.3 Modified Newton–Raphson法………………………………..29 第五章 案例分析結果與討論…………………………………………….31 5.1 結構實體………………………………...…………………………….31 5.2 幾何邊界條件…………………………………………………………32 5.3 力邊界條件……………………………………………………………32 5.4 分析結果與討論……………………………………………………....33 5.4.1 隔震結構週期與PGA之關係……………………………….33 5.4.2 基礎剪力與樓高、PGA之關係……………………………..34 5.4.3 基層剪力比與樓高之關係…………….……………………..34 5.4.4 最大彎曲韌性因子與PGA之關係…………………………..35 5.4.5 隔震結構最大彎曲韌性因子與樓高之關係.…….………….36 5.4.6 彎曲韌性比與樓高、PGA之關係.……………….………….37 5.4.7 桿件彎曲韌性與樓層相對高度之關係…………………...…38 5.4.8 花蓮大地震(HWA047)分析結果……………..…………..38 5.4.9 花蓮大地震下基層剪力比與樓高之關係………..……….…39 5.4.10 花蓮大地震下最大彎曲韌性因子與PGA之關係…………39 5.4.11 花蓮大地震下最大彎曲韌性因子與樓高之關係………….40 5.4.12 花蓮大地震下彎曲韌性比與樓高、PGA之關係………….40 5.4.13 加大隔震支承性質………………………………………….40 5.4.14 加大隔震支承性質後的能量……………………………….41 5.4.15 加大隔震支承性質後,基礎剪力與樓高、PGA之關係…....41 5.4.16 加大隔震支承性質後,基層剪力比與樓高之關係………..41 5.4.17 加大隔震支承性質後,最大彎曲韌性因子與PGA之關係………………………………………………………...…42 5.4.18 加大隔震支承性質後,隔震結構最大彎曲韌性因子與樓高之關係………………………………………….………..…42 5.4.19 加大隔震支承性質後,彎曲韌性比與樓高、PGA之關係…43 5.4.20 加大隔震支承性質後,桿件彎曲韌性與樓層相對高度之關係…………………………………………………..…….…43 第六章 結論與建議……………………………………………….………44 附表………………………………………………………………………….48 附圖………………………………………………………………………….78 參考文獻…………………………………………………………………...125 表目錄 表5-1 樑柱斷面與隔震支承參數……………………………………...…49 表5-2 TCU084與CHY046案例之結構自重與週期………………….…50 表5-3 HWA047案例之結構自重&週期……………...………………….50 表5-4 TCU084基礎剪力………………………………………………….51 表5-5 CHY046基礎剪力…………………………………………………52 表5-6 TCU084之 、 與桿件韌性………………………………….…. 53 表5-7 CHY046之 、 與桿件韌性…………………………………….54 表5-8 隔震結構各樓層最大桿件韌性…………………………………...55 表5-9 固定基礎結構各樓層最大桿件韌性……………………………...59 表5-10 隔震支承最大變位……………………………………………….63 表5-11 TCU能量輸入與消散表………………………………………….64 表5-12 CHY能量輸入與消散表…………………………………………65 表5-13 HWA(Soft)能量輸入與消散表………………………………..66 表5-14 HWA047(Soft)基礎剪力………………………………………….67 表5-15 HWA047(Soft)之 、 與彎曲韌性…………………..……….…68 表5-16 加大性質的隔震支承參數………………………………..…...…69 表5-17 HWA(Hard)能量輸入與消散表……………………………….70 表5-18 HWA047(Hard)基礎剪力………………………………..……….71 表5-19 HWA047(Hard)之 、 與桿件韌性……………….……………72 表5-20 花蓮地震下各樓層最大桿件彎曲韌性(Hard)…………………...73 表6-1 4樓結構之基礎剪力……………………………………………….77 表6-2 4樓結構之隔震支承位移………………………………………….77 圖目錄 圖1-1 傳統結構受振圖………………………………………...……..…. 79 圖1-2 隔震結構受振圖…………………………………………………...79 圖2-1 週期延長…………………………………………………...………80 圖2-2 阻尼增加…………………………………………………...………80 圖2-3 天然橡膠支承……………………………………………………...81 圖2-4 鉛心橡膠支承…………………………………………………...…81 圖2-5 高阻尼橡膠支承…………………………………………...…...… 82 圖2-6 摩擦單擺支承………………………………………………….…. 82 圖3-1 隔震系統靜力設計流程圖………………………………...………83 圖4-1 典型遲滯行為……………………………………………...………84 圖4-2 延伸線性加速度法之加速度表示圖……………………………...84 圖4-3 Newton-Raphson求解步驟圖……………………………………..85 圖4-4 Modified Newton-Raphson求解步驟圖…………………..………85 圖5-1 結構外觀圖………………………………………………………...86 圖5-2 TCU084加速度歷時……………………………………………….88 圖5-3 CHY046加速度歷時…………………………...……………...…. 88 圖5-4 HWA047加速度歷時……………………………………..………..89 圖5-5 5%阻尼比加速度反應譜……………………………...…..……….89 圖5-6 TCU084之Vb(I)—PGA圖..………………………………………90 圖5-7 TCU084之Vs(I)—PGA圖..……………………….………………90 圖5-8 TCU084之Vb(I)比例—PGA圖…………………………..……….91 圖5-9 TCU084之Vs(I)比例—PGA圖………………………..………….91 圖5-10 CHY046之Vb(I)—PGA圖………………………………………92 圖5-11 CHY046之Vs(I)—PGA圖………………………………………92 圖5-12 CHY046之基礎剪力比例—PGA圖…………………….……….93 圖5-13 CHY046之基層剪力比例—PGA圖……………………………..93 圖5-14 TCU084之 —樓層關係圖……………………………..………94 圖5-15 CHY046之 —樓層關係圖……………………………………..94 圖5-16 TCU084之 —PGA圖………………………………...…95 圖5-17 CHY046之 —PGA圖…………………………………..95 圖5-18 TCU084之 —PGA圖……………………………………96 圖5-19 CHY046之 —PGA圖……………………………………96 圖5-20 TCU084之 —樓層關係圖……………………….………97 圖5-21 CHY046之 —樓層圖……………………………….….. 97 圖5-22 TCU084之 —PGA圖………………………………………….98 圖5-23 CHY046之 —PGA圖…………………………….……………98 圖5-24 TCU084之 —樓層關係圖……………………………………..99 圖5-25 CHY046之 —樓層關係圖……………………………………..99 圖5-26~圖5-33 TCU084之彎曲韌性—樓層分佈圖………………….100 圖5-34~圖5-41 CHY046之彎曲韌性—樓層分佈圖…………………104 圖5-42 HWA047(Soft)之Vb(I)—PGA圖………………………………108 圖5-43 HWA047(Soft)之Vs(I)—PGA圖……………………………….108 圖5-44 HWA047(Soft)之Vb(I)比例—PGA圖………………………….109 圖5-45 HWA047(Soft)之Vs(I)比例—PGA圖……………………….…109 圖5-46 HWA047(Soft)之 —樓層關係圖…………………………..…110 圖5-47 HWA047(Soft)之 —PGA圖…………………...………110 圖5-48 HWA047(Soft)之 —PGA圖………………...……...…. 111 圖5-49 HWA047(Soft)之 —樓層關係圖……………………….111 圖5-50 HWA047(Soft)之 —PGA圖…………………………………..112 圖5-51 HWA047(Soft)之 —樓層關係圖…………………………..…112 圖5-52 HWA047(Hard)之Vb(I)—PGA圖………………………………113 圖5-53 HWA047(Hard)之Vs(I)—PGA圖………………………………113 圖5-54 HWA047(Hard)之Vb(I)比例—PGA圖…………………………114 圖5-55 HWA047(Hard)之Vs(I)比例—PGA圖…………………………114 圖5-56 HWA047(Hard)之 —樓層關係圖…………………………….115 圖5-57 HWA047(Hard)之 —PGA圖………………………...…115 圖5-58 HWA047(Hard)之 —樓層關係圖……………….…...…116 圖5-59 HWA047(Hard)之 —PGA圖…………………………………116 圖5-60 HWA047(Hard)之 —樓層關係圖…………………………….117 圖5-61~圖5-68 HWA047(Hard)之彎曲韌性—樓層分佈圖…………..117 圖6-1 集集地震下之樑柱降伏點……………………………………….122 圖6-2 嘉義地震下之樑柱降伏點……………………………………….123 圖6-3 花蓮地震下之樑柱降伏點…………………………………….…124

    參考文獻
    1. ATC Report 10, “An Investigation of the Correlation Between Earthquake Ground Motion and Building Performance”, Applied Technology Council, Redwood City, California, 1982
    2. B. Mohraz, F. E. Elghadamsi and C-J Chang, “An Incremental Mode-Superposition for Non-Linear Dynamic Analysis”, Earthquake Engineering and Structural Dynamics, Vol. 20, 471-481, 1991
    3. B. A. Allred, L. J. Billings and R. Shepherd, “Ultimate Response Characteristics of Base Isolated Structures”, Eleventh World Conference on Earthquake Engineering, No. 1348, 1996
    4. C. G. Koh and J. M. Kelly, “A Simple Mechanical Model for Elastomeric Bearings Used in Base Isolation”, International Journal of Mechanical Science, Vol. 30, No. 12, 933-943, 1988
    5. C. G. Koh and T. Balendra, “Seismic Response of Base Isolated Buildings Including P-Δ Effects of Isolation Bearings”, Earthquake Engineering and Structural Dynamics, Vol. 18, 461-473, 1989
    6. F. Naeim and J. M. Kelly, “Design of Seismic Isolated Structures: From Theory to Practice”, John Wiley & Sons, 1999
    7. FEMA, “NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures”, Federal Emergency Management Agency (Report No. FEMA 302, 303), Washington, D. C., 1997
    8. G-H Koo, J-H Lee, B. Yoo and Y. Ohtori, “Evaluation of Laminated Rubber Bearings for Seismic Isolation Using Modified Macro-Model with Parameter Equations of Instantaneous Apparent Shear Modulus”, Engineering Structures, Vol. 21, 594-602, 1999
    9. H-C Tsai and J. M. Kelly, “Seismic Response of the Superstructure and Attached Equipment in a Base-Isolated Building”, Earthquake Engineering and Structural Dynamics, Vol. 18, 551-573, 1989
    10. H-C Tsai and J. M. Kelly, “Seismic Response of Heavily Damped Base Isolation Systems”, Earthquake Engineering and Structural Dynamics, Vol. 22, 633-645, 1993
    11. IBC, “International Building Code”, International Code Council, USA, 2000
    12. J. M. Kelly, “Seismic Isolation as an Innovative Approach for the Protection of Engineered Structures”, Eleventh European Conference on Earthquake Engineering, 1998
    13. M. F. Cruz A. and O. A. Lopez, “Plastic Energy Dissipated During an Earthquake as a Function of Structural Properties and Ground Motion Characteristics”, Engineering Structures, Vol. 22, 784-792, 2000
    14. M. O. Moroni, M. Sarrazin and R. Boroschek, “Experiments on a Base-Isolated Building in Santiago, Chile”, Engineering Structures, Vol. 20, 720-725, 1998
    15. M. Kikuchi and I. D. Aiken, “An Analytical Hysteresis Model for Elastomeric Seismic Isolation Bearings”, Earthquake Engineering and Structural Dynamics, Vol. 26, 215-231, 1997
    16. P. P. Rossi, P. Lenza and M. Pagano, “Base Isolation Strategy for Frame Buildings”, Eleventh World Conference on Earthquake Engineering, No. 1345, 1996
    17. P. R. Boardman and T. E. Kelly, “Base Isolation to Protect New Zealand’s Heritage”, Eleventh World Conference on Earthquake Engineering, No. 499, 1996
    18. R. I. Skinner, J. M. Kelly and A. J. Heine, “Hysteretic Dampers for Earthquake-Resistant Structures”, Earthquake Engineering and Structural Dynamics, Vol. 3, 287-296, 1975
    19. R. I. Skinner, W. H. Robinson and G. H. McVerry, “An Introduction to Seismic Isolation”, John Wiley & Sons, Chichester, 1993
    20. S. K. Deb and D. K. Paul, “Simplified Non-Linear Analysis of Base Isolated Building”, Eleventh World Conference on Earthquake Engineering, No. 1344, 1996
    21. S. Nagarajaiah, A. M. Reinhorn and M. C. Constantinou, “Nonlinear Dynamic Analysis of 3-D-Base-Isolated Structures”, Journal of Structural Engineering, ASCE, Vol. 117, No. 7, 2035-2054, 1991
    22. S. Nagarajaiah and S. Xiaohong, “Response of Base-Isolated USC Hospital Building in Northridge Earthquake”, Journal of Structural Engineering, ASCE, Vol. 126, No. 10, 1177-1186, 2000
    23. Sap2000, “Integrated Finite Element Analysis and Design of Structures: Analysis Reference”, Computers and Structures, Inc, Berkeley, California, USA, 1998
    24. T-C Pan and G. Yang, “Nonlinear Analysis of Base-Isolated MDOF Structures”, Eleventh World Conference on Earthquake Engineering, No. 1534, 1996
    25. T-C Pan and J. M. Kelly, “Seismic Response of Torsionally Coupled Base Isolated Structures”, Earthquake Engineering and Structural Dynamics, Vol. 11, 749-770, 1983
    26. T-C Pan and J. M. Kelly, “Seismic Response of Base-Isolated Structures with Vertical-Rocking Coupling”, Earthquake Engineering and Structural Dynamics, Vol. 12, 681-702, 1984
    27. W. H. Robinson, “Recent Research and Applications of Seismic Isolation in New Zealand”, Bulletin of the New Zealand National Society for Earthquake Engineering, Vol. 28, No. 4, 253-264, 1995
    28. Y. J. Park, Y. K. Wen and A. H-S. Ang, “Random Vibration of Hysteretic Systems under Bi-Directional Ground Motions”, Earthquake Engineering and Structural Dynamics, Vol. 14, 543-557, 1986
    29. Y. K. Wen, “Method for Random Vibration of Hysteretic Systems”, Journal of the Engineering Mechanics Division, ASCE, Vol. 102, No. EM2, April, 249-263, 1976
    30. 洪文岳, “鋼筋混凝土抗彎構架系統之集集大地震非線性分析--探討耐震設計規範結構行為參數”, 2001

    下載圖示 校內:立即公開
    校外:2002-09-02公開
    QR CODE