簡易檢索 / 詳目顯示

研究生: 黃莉玉
Huang, Li Yu
論文名稱: 聚丙烯腈結合多醚基高分子為主架構之膠態電解質在鋰離子電池之應用
Polyacrylonitrile Incorporated with Ether-Abundant Polymers as the Gel-Electrolyte Framework for Lithium Ion Batteries
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 86
中文關鍵詞: 鋰離子電池聚丙烯腈醚基膠態高分子電解質
外文關鍵詞: Lithium ion battery, gel polymer electrolyte, polyacrylonitrile
相關次數: 點閱:114下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以聚丙烯腈為主架構,藉接枝上poly(propylene oxide) diamines (D2000),使之交聯上poly(ethylene glycol) diglycidyl ether(PEGDE)改質形成含多醚基高分子,簡稱為PMP。藉電紡絲方法製備之高分子薄膜浸泡於有機電解液中4小時,即可得到膠態高分子電解質(GPMP),同時與之相比較之系統尚有未改質前之GPAN與液相電解液(LE,以PP膜作為隔離膜)。將GPMP與另兩種電解質進行電池組裝測試其性能,並比較分析GPMP之優勢。
    由NMR鑑定GPAN官能基並確認D2000確實接上PAN形成GPMP。接著藉由拉曼分析、電化學穩定電位窗、導離子度與鋰離子遷移常數分析了解,負離子(PF6-)應受到高分子吸引而與高分子形成較為穩定之複合物,而鋰離子則由於含多醚基官能基,使其在GPMP系統中躍遷較為容易,提升了導離子度以及鋰離子遷移常數(0.65)。接著由全電池阻抗分析以及全電池壓降分析,可以得知GPMP系統皆表現較低之阻力值,此結果肇因於高分子對於負離子的箝制以及對鋰離子傳遞的幫助,並與電極表現出較佳之相容性。
    GPMP電池性能使用磷酸鋰鐵陰極搭配介相碳微球陽極組裝成全電池測試,比較GPMP、GPAN與LE的差異。在高速充放電(17 C-rate)時,LE與GPAN表現衰退僅剩44%與60%。相較之下,GPMP還保有75%之維持率,並擁有97.4 mAh/g之高放電量。在高速(5 C-rate)長效穩定性測試方面,進行500圈長效充放電測試後,GPMP與GPAN全電池的穩定分別維持73%與71%,且一千圈後,GPMP系統仍有維持率約61%,電容量為75 mAh/g,表4-2 整理近年全電池文獻,可更清楚瞭解本研究之表現。

    This study reports a gel polymer electrolyte (GPE) that is synthesized using Poly(acrylonitrile-co-methyl acrylate) (PAN) to construct the body frame and serve as mechanical property source. To promote the lithium ion motion, PAN first reacted with poly(propylene oxide) diamines (D2000) to substitute methyl acrylate groups and graft D2000 onto main chain, then crosslinked with poly(ethylene glycol) diglycidyl ether(PEGDE) to form PMP polymer matrix. After swelling with LE the resulting gel-type of PMP (GPMP) exhibited excellent ionic conductivity, mechanical integrity, thin-film feasibility, and chemical stability.
    With SEM, NMR, Raman, linear scan voltammetry, ionic conductivity and transference number tests, we can identify the structure of polymer and depict the interactions between electrolyte and polymer. By incorporating GPMP with a mesocarbon microbeads (MCMB) anode and a LiFePO4 cathode, we developed a full-cell LIB that delivered energy at high speeds (17 C) and exhibited excellent capacity retention with long-term cycling at 5 C. To better understand the good performance in full cells, AC impedance test was applied to measure the impedance of full cell before activation, after activation and after full charge-discharge program. The analysis leads to lower SEI layer resistance and charge transfer resistance of GPMP compared to GPAN. Higher compatibility toward electrodes and large transference number of Li+ ions (0.65) of GPMP were primarily responsible for the outstanding performance of the resulting LIB. For comparison, the gel-type PAN (GPAN) and liquid phase with Celgard separator were also tested under the same condition.

    第一章 緒論 1 1-1前言-電池發展與介紹 1 1-2 鋰電池與鋰離子二次電池 4 1-2.1 裝置構造 5 1-2.2 工作原理 5 1-3 電解質 7 1-3.1 液態有機電解質 7 1-3.2 固態高分子電解質 9 1-3.3 膠態高分子電解質 11 1-4 電極材料 13 1-4.1 正極材料 13 1-4.2 負極材料 15 1-5 研究動機與目的 18 第二章 理論說明與文獻回顧 19 2-1聚丙烯腈性質與回顧 19 2-2電紡絲技術(Electrospinning) 21 2-3導離子度 25 2-4 正離子遷移常數 27 第三章 實驗方法與儀器原理介紹 30 3-1 實驗藥品 30 3-2 實驗儀器設備 31 3-3 膠態高分子電解質製備 32 3-4 鈕扣型電池(coin-cell)組裝 34 3-5 實驗分析儀器與裝置分析儀器原理簡介 35 3-5.1掃描式電子顯微鏡 (Scanning Electron Microscope) 35 3-5.2 核磁共振光譜儀(Nuclear Magnetic Resonance, NMR) 37 3-5.3 拉曼光譜分析(Raman Spectrum) 41 3-6 電化學測試 43 3-6.1 導離子度(Ionic conductivity, σ) 43 3-6.2 線性掃描伏安法(Linear sweep voltammogram, LSV) 43 3-6.3 鋰離子遷移常數 (Lithium transference number, tLi+) 44 3-6.4全電池阻力測試 44 3-7 LiFePO4電池性能測試 44 3-7.1 LiFePO4正極之極片製作 44 3-7.2 介相碳微球(MCMB)負極之極片製作 45 3-7.3 MCMB/LiFePO4全電池 45 3-8 實驗流程 46 第四章 結果與討論 47 4-1高分子物理分析與鑑定 47 4-1.1高分子膜形貌 47 4-1.2 SEM分析 48 4-1.3 NMR分析鑑定 49 4-1.4 Raman分析 51 4-2膠態電解質電化學分析 54 4-2.1 離子傳導度(Ionic conductivity) 54 4-2.2 電化學穩定度量測 57 4-2.3鋰離子遷移數(Lithium transference number, tLi+) 59 4-3 LiFePO4半電池性能測試 61 4-4 MCMB|LiFePO4全電池性能測試 64 4-4.1 充放電性能測試 64 4-4.2 全電池界面阻力測試 67 4-4.3 全電池voltage drop分析 70 4-4.4 Ragone plot 72 4-4.5 長效充放電測試 73 4-4.6 文獻比較 75 第五章 結論與建議 77 參考文獻 79

    1. Z. Fu, H. Feng, C. Sun, X. Xiang, W. Wu, J. Luo, Q. Hu, A. Feng and W. Li, Influence of solvent type on porosity structure and properties of polymer separator for the Li-ion batteries. Journal of Solid State Electrochemistry, 2013. 17, 2167–2172.
    2. A. Hofmann, M. Schulz, and T. Hanemann, Gel electrolytes based on ionic liquids for advanced lithium polymer batteries. Electrochimica Acta, 2013. 89, 823-831.
    3. P. Isken, M. Winter, S. Passerini, and A. Lex-Balducci, Methacrylate based gel polymer electrolyte for lithium-ion batteries. Journal of Power Sources, 2013. 225, 157-162.
    4. Kim, K.M., et al., Enhanced separator properties by thermal curing of poly(ethyleneglycol)diacrylate-based gel polymer electrolytes for lithium-ionbatteries. Electrochimica Acta, 2014. 120, 159-166.
    5. A. S. S. Lee, J. H. Lee, J. C. Lee, S. M. Hong, S. S. Hwang and C. M. Koo, Novel polysilsesquioxane hybrid polymer electrolytes for lithium ion batteries. Journal of Materials Chemistry A, 2014. 2, 1277-1283.
    6. Y. W. Lee, W. K. Shin, and D. W. Kim, Cycling performance of lithium-ion polymer batteries assembled using in-situ chemical cross-linking without a free radical initiator. Solid State Ionics, 2014. 255, 6-12.
    7. J. Liu, W. Li, X. Zuo, S. Liu and Z. Li, Polyethylene-supported polyvinylidene fluorideecellulose acetate butyrate blended polymer electrolyte for lithium ion battery. Journal of Power Sources, 2013. 226, 101-106.
    8. X. Ma, X. Huang, J. Gao, S. Zhang, Z. Deng, and J. Suo, Compliant gel polymer electrolyte based on poly(methylacrylate-co-acrylonitrile)/poly(vinyl alcohol) for flexiblelithium-ion batteries. Electrochimica Acta, 2014. 115, 216-222.
    9. J. L. Shi, L. F. Fang, H. Li, H. Zhang, B. K. Zhu, and L. P. Zh, Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries. Journal ofMembraneScience, 2013. 437, 160-168.
    10. G.B. Appetecchi, F. Croce, and B. Scrosati, Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochimica Acta, 1995. 40, 991–997.
    11. L. Y. Huang, Y. C. Shih, S. H. Wang, P. L. Kuo, and H. Teng, Gel electrolytes based on an ether-abundant polymeric framework for high-rate and long-cycle-life lithium ion batteries. Journal of Materials Chemistry A, 2014. DOI: 10.1039/c4ta01527d.
    12. J. Cao, L. Wang, M. Fang, Y. Shang, L. Deng, J. Yang, J. Li, H. Chen, and X. He, Interfacial compatibility of gel polymer electrolyte and electrode on performance of Li-ion battery. Electrochimica Acta, 2013. 114, 527– 532.
    13. X. Li, G. Cheruvally, J. K. Kim, J. W. Choi, J. H. Ahn, K. W. Kim, and H. J. Ahn, Polymer electrolytes based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene) membrane for lithium batteries. Journal of Power Sources 2007. 167, 491–498.
    14. T. H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase, and T. Sakai, Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery. Journal of Power Sources, 2008. 181, 155–160.
    15. P. Raghavan, J. Manuel, X. Zhao, D. S. Kim, and J. H. Ahn, Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries. Journal of Power Sources, 2011. 196, 6742–6749.
    16. R. Prasanth, , V. Aravindan, and M. Srinivasan, Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium ion batteries—Preparation and electrochemical characterization. Journal of Power Sources, 2012. 202, 299– 307.
    17. Z. Wang, B. Huang, R. Xue, X. Huang, and L. Chen, Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes. Solid State Ionics 1999. 121, 141–156.
    18. K. M. Abraham, and M. Alamgir, Li+-Conductive Solid Polymer Electrolytes with Liquid-Like Conductivity. The Electrochemical Society, 1990. 137, 1657-1658.
    19. F. Krok, J. R. Dygas, B. Misztal-Faraj, Z. Florjanczyk, and W. Bzducha b, Impedance and polarisation studies of new lithium polyelectrolyte gels. Journal of Power Sources 1999. 81–82, 766–771.
    20. B. K. Choi, , Y. W. Kim, and H. K. Shin, Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochimica Acta 2000. 45, 1371–1374.
    21. H. S. Min, D. W. Kang, D. Y. Lee, and D. W. Kim, Gel polymer electrolytes prepared with porous membranes based on an acrylonitrile/methyl methacrylate copolymer. Journal of Polymer Science Part B: Polymer Physics, 2002. 40, 1496–1502.
    22. M. M. Nasef, , R. R. Suppiah, and K. Z. M. Dahlan, Preparation of polymer electrolyte membranes for lithium batteries by radiation-induced graft copolymerization. Solid State Ionics, 2004. 171, 243–249.
    23. 黃可龍, 王兆翔, and 劉素琴, 鋰離子電池原理與技術 Lithium ion batteries: principles and key technologies. 2010, 台灣: 五南圖書出版股份有限公司.
    24. J. Hajek, 1949: French Patent. 10.
    25. M. B. Armand, Materials for Advanced Batteries. 1980, New York: Plenum Press.
    26. Basu, S., 4, Editor. 1983, 423: USA Patent.
    27. T. Ohzuku, and A. Ueda, Solid-state redox reactions of LiCoO2 (R̄3m) for 4 volt secondary lithium cells. journal of the Electrochemical Society, 1994. 141, 2972–2977.
    28. D. Rahner, S. Machill, H. Schlorb, K. Siury, M. Klob, and W. Plieth, Intercalation materials for lithium rechargeable batteries. Solid State Ionics, 1996. 86-88, 891-896.
    29. J. O. Besenhard, M. Hess, and P. Komeda, Dimensionally stable Li-alloy electrodes for secondary batteries. Solid State Ionics 1990. 40/41, 525-529.
    30. G. T. K. Fey, , W. Li, and J. R. Dahn, LiNiVO4: A 4.8 Volt Electrode Material for Lithium Cells. Journal of The Electrochemical Society, 1995. 141, 2279-2282.
    31. T. Sasaki, K. Ezawa, S. Harada, Y. Fukasawa, T. Kanai, A. Ikeda, J. Rhee, and O. Yee, Lithium ion batteries. Citi Research, 2012.
    32. W. H. Meyer, Polymer Electrolytes for Lithium-Ion Batteries. Advanced Materials, 1998. 10, 439–448.
    33. J. S. Tonge, and D. F. Shriver, Increased Dimensional Stability in Ionically Conducting Polyphosphazenes Systems. Journal of The Electrochemical Society, 1987. 134, 269-270.
    34. X. Andrieua, J. F. Fauvarque, A. Goux, T. Hamaide, R. M'hamdi, and T. Vicedo, Solid polymer electrolytes based on statistical poly(ethylene oxide-propylene oxide) copolymers. Electrochimica Acta, 1995. 40, 2295-2299.
    35. A. S. Gozdz, J. M. Tarascon, P. C. Warren, C. N. Schmutz, and F. K. Shokoohi, Proceedings of the Fifth International Symposium on Polymer Electrolyte. 1996: Uppsala, Sweden, 11-16.
    36. H. R. Allcock, P. E. Austin, T. X. Neenan, J. T. Sisko, P. M. Blonsky, and D. F. Shriver, Polyphosphazenes with etheric side groups: prospective biomedical and solid electrolyte polymers. Macromolecules, 1986. 19, 1508–1512.
    37. M. Shibataa, T. Kobayashi, R. Yosomiya, and M. Seki, Polymer electrolytes based on blends of poly(ether urethane) and polysiloxanes. European Polymer Journal, 2000. 36, 485–490.
    38. T. Fujinami, A. Tokimune, and M. A. Mehta, Siloxyaluminate Polymers with High Li+ Ion Conductivity. Chemistry of Materials, 1997. 9, 2236-2239.
    39. G. Feuillade, and P. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry, 1975. 5,. 63-69.
    40. Y. Ito, K. Kanehori, K. Miyauchi, and T. Kudo, Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex low molecular weight poly(ethylene glycol). Journal of Materials Science, 1987. 22, 1845-1849.
    41. A. S. Gozdz, C. N. Schmutz, and J. M. Tarascon, Polymeric electrolytic cell separator membrane. 1995: US., 091.
    42. A. K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. Journal of Electrochemical Society, 1997. 144, 1188-1194.
    43. C. L. Chen, H. Teng, and Y. L. Lee, Preparation of highly efficient gel-state dye-sensitized solar cells using polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate). Journal of Materials Chemistry, 2011. 21, 628-632.
    44. H. Akashi, K. Sekai, and K. Tanaka, A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries. Electrochimica Acta, 1998. 43, 1193-1197.
    45. P. Carol, P. Ramakrishnan, B. John, and G. Cheruvally, Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. Journal of Power Sources, 2011. 196, 10156–10162.
    46. M. Watanabe, M. Kanba, H. Matsuda, K. Mizoguchi, I. Shinohara, and E. Tsuchida, High Lithium Ionic Conductivity of Polymeric Solid Electrolytes. Chem.-Rapid. Commun., 1981. 2, 741-744
    47. H. Huang, L. Chen, X. Huang, and R. Xue, Studies on PAN-based lithium salt complex. Electrochimica Acta, 1992. 37, 1671-1673.
    48. X. Hou, and K. S. Siow, Electrochemical characterization of plasticized polymer electrolytes based on ABS/PMMA blends. Journal of Solid State Electrochemistry, 2001. 5, 293-299.
    49. S. H. Wang, S. S. Hou, P. L. Kuo, and H. Teng, Poly(ethylene oxide)-co-Poly(propylene oxide)-Based Gel Electrolyte with High Ionic Conductivity and Mechanical Integrity for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2013. 5, 8477-8485.
    50. Z. Wang and Z. Tang, Characterization of the polymer electrolyte based on the blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(vinyl pyrrolidone) for lithium ion battery. Materials Chemistry and Physics 2003. 82, 16–20.
    51. J. W. Choi, J. H. Kim, G. Cheruvally, J. H. Ahn, K. W. Kim, H. J. Ahn, and J. U. Kim, Microporous poly(vinylidene fluoride-co-hexafluoropropylene) polymer electrolytes for lithium/sulfur cells. Journal of Industrial and Engineering Chemistry, 2006. 12, 939-949.
    52. P. Raghavan, X. Zhao, J. Manuel, C. Shin, M. Y. Heo, J. H. Ahna, H. S. Ryub, H. J. Ahn, J. P. Noh, and G. B. Cho, Electrochemical studies on polymer electrolytes based on poly(vinylidene fluoride-co-hexafluoropropylene) membranes prepared by electrospinning and phase inversion—A comparative study. Materials Research Bulletin, 2010. 45, 362–366.
    53. Z. M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63, 2223–2253.
    54. K. Garg, and G. L. Bowlin, Electrospinning jets and nanofibrous structures. Biomicrofluidics, 2011. 5, 013403(19).
    55. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin film. Polymer, 1999. 40, 7397–7407.
    56. B. Sundaray, V. Subramanian, T. S. Natarajan, and K. Krishnamurthy, Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Applied Physics Letters, 2006. 88, 143114(3).
    57. M. J. C. Plancha, , C. A. C. Sequeira, and D. M. F. Santos, Polymer electrolytes. 2010, UK: Woodhead Publishing Limited.
    58. P. G. Bruce, M. T. Hardgrave, and C. A. Vincent, The determination of transference numbers in solid polymer electrolytes using the Hittorf method. Solid State lonics, 1992. 53-56, 1087-1094.
    59. J. Evans, and C. A. Vincent, Electrochemical measurement of transference numbers in polymer electrolytes. POLYMER, 1987. 28, 2324-2328.
    60. P. G. Bruce, and C. A. Vincent, Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem., 1987. 225, 1-17.
    61. C. G. Barlowz, Reaction of Water with Hexafluorophosphates and with Li Bis(perfluoroethylsulfonyl)imide Salt. Electrochemical and Solid-State Letters, 1999. 2, 362-364.
    62. A. Khursheed, , Scanning Electron Microscope Optics and Spectrometer. 2010, Singapore: World Scientific Publishing Company. p. 416.
    63. Z. Zhang, L. Zhang, S. Wang, W. Chen, and Y. Lei, A convenient route to polyacrylonitrile/silver nanoparticle composite by simultaneous polymerization–reduction approach. Polymer, 2001. 42, 8315–8318.
    64. Q. T. Pham, R. Petiaud, and H. Waton, Proton and Carbon NMR Spectra of Polymers. 1991, London, England; USA: Penton Press Ltd (UK); CRC Press, Inc (USA).
    65. J. Nieberle, Hyperbranched polyglycerols as building blocks for complex amphiphilic structures: synthesis, characterization and applications, in am Fachbereich Chemie, Pharmazie und Geowissenschaften. 2008, Johannes Gutenberg-Universität: German. p. 193.
    66. A. Sanchez-Ferre, and R. Mezzenga, Secondary Structure-Induced Micro- and Macrophase Separation in Rod-Coil Polypeptide Diblock, Triblock, and Star-Block Copolymers. Macromolecules, 2010. 43, 1093–1100.
    67. S. W. Choi, J. R. Kim, S. M. Jo, W. S. Lee, and Y. R. Kim, Electrochemical and Spectroscopic Properties of Electrospun PAN-Based Fibrous Polymer Electrolytes. Journal of The Electrochemical Society, 2005. 152, A989-A995.
    68. S. K.Chaurasia, R. K. Singh, and S. Chandra, Ion–polymer complexation and ion-pair formation in a polymer electrolyte PEO:LiPF6 containing an ionic liquid having same anion: A Raman study. Vibrational Spectroscopy, 2013. 68, 190– 195.
    69. R. Aroca, M. Nazri, G. A. Nazri, A. J. Camargo, and M. Trsic, Vibrational Spectra and Ion-Pair Properties of Lithium Hexafluorophosphate in Ethylene Carbonate Based Mixed-Solvent Systems for Lithium Batteries. Journal of Solution Chemistry, 2000. 29, 1047-1060.
    70. K. Kondo, M. Sano, A. Hiwara, T. Omi, M. Fujita, A. Kuwae, M. Iida, K. Mogi, and H. Yokoyama, Conductivity and Solvation of Li+ Ions of LiPF6 in Propylene Carbonate Solutions. The Journal of Physical Chemistry B, 2000. 104, 5040-5044.
    71. C. M. Burba, and R. Frech, Spectroscopic Measurements of Ionic Association in Solutions of LiPF6. The Journal of Physical Chemistry B, 2005. 109, 15161-15164.
    72. P. L. Kuo, W. J. Liang, and T. Y. Chen, Solid polymer electrolytes V: microstructure and ionic conductivity of epoxide-crosslinked polyether networks doped with LiClO4. Polymer, 2003. 44, 2957–2964.
    73. J. Saunier, F. Alloin, J. Y. Sanchez, and G. Caillon, Thin and flexible lithium-ion batteries: investigation of polymer electrolytes. Journal of Power Sources, 2003. 119, 454–459.
    74. M. H. Cohen, and D. Turnbull, Molecular Transport in Liquids and Glasses. The Journal of Chemical Physics 1959. 31, 1164.
    75. J. S. Gnanaraj, M. D. Levi, Y. Gofer, D. Aurbach, and M. Schmidt, LiPF3(CF2CF3)3 : A Salt for Rechargeable Lithium Ion Batteries. Journal of The Electrochemical Society, 2003. 150, A445-A454.
    76. S. Leroy, F. Blanchard, R. Dedryv`ere, H. Martinez, B. Carr´e, D. Lemordant, and D. Gonbeau, Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study. SURFACE AND INTERFACE ANALYSIS, 2005. 37, 773–781.
    77. J. McBreen, H. S. Lee, X. Q. Yang, and X. Sun, New polymer and liquid electrolytes for lithium batteries. in Electrochemical Society Fall Meeting. 1999. Honolulu, Hawaii: Electrochemical Society, Inc.
    78. S. H.Wu, and A. Huang, Effects of Tris(Pentafluorophenyl) Borane (TPFPB) as an Electrolyte Additive on the Cycling Performance of LiFePO4 Batteries. Journal of The Electrochemical Society, 2013. 160, A684-A689.
    79. K. Tasaki, and S. Nakamura, Computer Simulation of LiPF6 Salt Association in Li-Ion Battery Electrolyte in the Presence of an Anion Trapping Agent. Journal of The Electrochemical Society, 2001. 148, A984-A988.
    80. A. Yamada, H. Koizumi, N. Sonoyama, and R. Kanno, Phase Change in Li x FePO 4. Electrochemical and Solid-State Letters 2005. 8, A409-A413.
    81. B. Beak, F. Xu, and C. Jung, Electrolyte distribution — One of the key factors to improve the high-rate performance of gel polymer Li ion batteries. Solid State Ionics, 2011. 202, 40-44.
    82. S. S. Zhang, K. Xu, and T. R. Jow, Electrochemical impedance study on the low temperature of Li-ion batteries. Electrochimica Acta, 2004. 49, 1057-1061.
    83. B. Saha, and K. Goebel, Modeling Li-ion Battery Capacity Depletion in a Particle Filtering Framework, in Prognostics and Health Management Society. 2009: San Diego.
    84. T. Zhang, N. Imanishi, Y. Shimonishi, A. Hirano, Y. Takeda, O. Yamamoto, and S. Sammes, A novel high energy density rechargeable lithium/air battery. Chemical Communications, 2010. 46, 1661–1663.
    85. J. Y. Luo, and Y. Y. Xia, Aqueous Lithium-ion Battery LiTi2(PO4)3/LiMn2O4 with High Power and Energy Densities as well as Superior Cycling Stability. Advanced Functional Materials, 2007. 17, 3877–3884.

    下載圖示 校內:2019-08-06公開
    校外:2019-08-06公開
    QR CODE