簡易檢索 / 詳目顯示

研究生: 范喬瑄
Fan, Chiao-Hsuan
論文名稱: 適地性廣告特性對使用者持續使用行為之影響:以認知-情感-行為模型為觀點
The Influences of Location-Based Advertising Characteristics on Continued Usage Behavior: The Perspective of the Cognition-Affect-Behavior Model
指導教授: 張心馨
Chang, Hsin-Hsin
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 88
中文關鍵詞: 認知-情感-行為模型適地性廣告特性媒體豐富度功能利益隱私擔憂持續使用行為
外文關鍵詞: Cognition-Affect-Behavior Model, Location-Based Advertising, Media Richness, Utilitarian Benefit, Privacy Concern, Continued Usage Behavior
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行動上網與定位系統的普及,造就了適地性廣告的出現,此種廣告類型為商家帶來無限商機。商家除了可以自行推出適地性廣告APP之外,也可以依賴APP開發商,與同類型商家一起打廣告以增加曝光率。然而,適地性廣告擁有不同於傳統廣告的特性,最特別的莫過於需要取得消費者所在的地理位置。因此本研究採用認知-情感-行為模型為理論基礎,同時結合適地性行動廣告正、負面的特點,探討適地性廣告特性、消費者情感喚起(活躍喚起、緊張喚起、愉悅),以及是否影響消費者持續使用適地性廣告的行為。研究對象以使用過適地性廣告的消費者為主,總共取得579份有效問卷。結構方程模型資料分析結果顯示,媒體豐富度、資訊性、可信度高的適地性廣告為消費者帶來功能利益,進而喚起活躍的情緒;感知惱怒喚起緊張的情緒;而隱私權擔憂對緊張的情緒喚起則不顯著。再者,兩種情緒喚起(活躍喚起、緊張喚起)分別對愉悅有顯著的正、負向影響,進而影響持續使用行為。另,本研究納入適地性廣告的兩種傳遞方式:推式及拉式,作為兩種情緒喚起到愉悅之間的干擾,結果皆為顯著。最後,本研究建議適地性廣告之開發商加強資訊的豐富程度,並提供更貼近消費者的廣告訊息;也可以在未來結合不同功能(如:聯合社羣網站、行動支付)以留住現有顧客、吸引潛在消費者。

    The popularity of wireless Internet and the global positioning system (GPS) has led to the development of location-based advertising (LBA). Such mobile advertising brings great commercial opportunities to both stores and companies. Stores can develop LBA applications on their own, or rely on application developers to increase their visibility, working with other stores in an alliance. However, LBA is different from traditional advertising, and the greatest difference is that it needs consumers’ real-time location to send the advertisements. This study thus uses the cognition-affect-behavior model as theoretical foundation, combined with the characteristics of LBA (including positive and negative dimensions) to discuss the influences of LBA on consumers’ emotional arousals (i.e. energetic arousal, tense arousal and pleasure) and their continued usage behaviors. The research subjects are consumers who have used LBA. Through an online survey, 579 valid questionnaires were collected. The result of SEM showed a high level of media richness, informativeness and credibility could yield utilitarian benefits, and thus influence energetic arousal; irritation would cause tense arousal, but privacy concerns has no impact on this. Moreover, energetic arousal and tense arousal have positive and negative impacts on pleasure, respectively, leading to continued usage behavior. In addition, this study uses delivery type (pull and push) as a moderator to investigate its influence on the relationship between the two arousals and pleasure. The results showed that the pull-and-push moderating effect is significant. Lastly, this study suggests that LBA application developers should work to enhance the media richness of LBA, and provide more related information to consumers. Moreover, their applications should combine various functions (e.g. being connected to social networks and allowing mobile payments) to retain existing customers and attract potential ones.

    摘要 .... .... .... .... ... I Abstract .... .... .... .... . II List of Tables .... .... .... .... V List of Figures .... .... .... .... V CHAPTER ONE INTRODUCTION .... .... ... 1 1.1 Research Background and Motivation .... .... .... .. 1 1.2 Research Questions and Research Gaps .... .... .... . 2 1.3 Research Objectives .... .... .... .... . 3 1.4 Research Process .... .... .... .... ... 4 CHAPTER TWO LITERATURE REVIEW & HYPOTHESES DEVELOPMENT . 6 2.1 Location-Based Advertising (LBA) .... .... .... . 6 2.2 Cognition-Affect-Behavior (C-A-B) Model .... .... ... 9 2.3 Cognition .... .... .... .... .... 13 2.3.1 Positive Dimension: Utilitarian Benefit .... .... .... 13 2.3.2 Negative Dimension: Privacy Concern .... .... ... 14 2.3.3 The Antecedents of Continued Usage of LBA .... .... .. 15 2.4 Affect: Pleasure and Arousal .... .... .... .... 21 2.4.1 Pleasure .... .... .... .... .. 22 2.4.2 Arousal .... .... .... .... ... 23 2.5 Behavior: Continued Usage of LBA .... .... .... . 24 2.6 The Moderator: Type of LBA Delivery .... .... .... 24 2.7 Conceptual Framework .... .... .... ..... 25 2.8 Hypotheses Development .... .... .... ... 27 2.8.1 Perceived Media Richness and Utilitarian Benefit .... .... .. 27 2.8.2 Perceived Informativeness and Utilitarian Benefit .... .... .. 28 2.8.3 Perceived Credibility and Utilitarian Benefit .... .... .. 28 2.8.4 Privacy Control and Privacy Concern .... .... .... 29 2.8.5 Privacy Policy and Privacy Concern .... .... .... 29 2.8.6 Utilitarian Benefit and Energetic Arousal .... .... ... 30 2.8.7 Perceived Irritation and Tense Arousal .... .... .... 31 2.8.8 Privacy Concern and Tense Arousal .... .... ..... 31 2.8.9 Energetic Arousal and Pleasure .... .... .... .. 31 2.8.10 Tense Arousal and Pleasure .... .... .... ... 32 2.8.11 Pleasure and Contined Usage of LBA .... .... ... 33 2.8.12 The Moderating Effect .... .... .... .... 34 CHAPTER THREE RESEARCH DESIGN & METHODOLOGY ..... 36 3.1 Definitions of the Constructs and Summary of Hypotheses .... .... 36 3.1.1 Definitions of Constructs .... .... .... ... 36 3.1.2 Summary of Hypotheses .... .... .... .. 37 3.2 Measurement Developments and Questionnaire Design .... .... 38 3.2.1 Construct Items .... .... .... .... . 39 3.2.2 Other Measurement Items and Demographic Variables .... ... 44 3.3 Pilot Test .... .... .... .... ... 44 3.4 Data Analysis Procedure .... .... .... ... 47 3.4.1 Descriptive Statistical Analysis .... .... .... .. 48 3.4.2 Confirmatory Factor Analysis .... .... .... .. 48 3.4.3 Reliability and Validity Analyses .... .... .... .. 48 3.4.4 Structural Equation Modeling .... .... .... .. 48 3.4.5 Competing Model Analysis for Moderating Effects .... .... 49 CHAPTER FOUR RESEARCH ANALYSIS & RESULTS .... ... 50 4.1 Sample Collection and Demographics Analysis .... .... .. 50 4.2 Descriptive Analyses .... .... .... .... .. 52 4.3 Measurement Model Assessment .... .... .... ... 55 4.3.1 Confirmatory Factor Analysis (CFA) .... .... ... 55 4.3.2 Reliability and Validity Analyses .... .... .... .. 59 4.3.3 Discriminant Validity Analysis .... .... .... . 59 4.4 Hypotheses Testing .... .... .... .... . 60 4.4.1 SEM Model Fit and SEM Path Analysis .... .... ... 60 4.4.2 Competing Model – Moderating Effect Testing .... .... . 64 4.4.3 Summary of Hypotheses Testing .... .... .... . 65 CHAPTER FIVE CONCLUSIONS & RECOMMENDATIONS .... .66 5.1 Hypotheses Discussion .... .... .... .... 66 5.1.1 Perceived Media Richness and Utilitarian Benefit (H1) .... .... 66 5.1.2 Perceived Informativeness and Utilitarian Benefit (H2) .... .... 67 5.1.3 Perceived Credibility and Utilitarian Benefit (H3) .... .... .. 67 5.1.4 Privacy Control and Privacy Concern (H4) .... .... ... 67 5.1.5 Privacy Policy and Privacy Concern (H5) .... .... .. 68 5.1.6 Utilitarian Benefit and Energetic Arousal (H6).... .... . 69 5.1.7 Perceived Irritation and Tense Arousal (H7) .... .... .. 69 5.1.8 Privacy Concern and Tense Arousal (H8) .... .... ... 70 5.1.9 Energetic Arousal and Pleasure (H9) .... .... ... 70 5.1.10 Tense Arousal and Pleasure (H10) .... .... .... 71 5.1.11 Pleasure and Continued Usage of LBA (H11) .... .... .. 71 5.1.12 The Moderating Effects (H12 - H13) .... .... ... 72 5.2 Implications .... .... .... .... ... 72 5.2.1 Theoretical Implications .... .... .... ... 73 5.2.2 Managerial Implications .... .... .... ... 74 5.3 Limitations and Directions for Future Research .... .... .. 75 References .... .... .... .... . 76 Appendix: Full Questionnaire .... .... ..... 83 List of Tables Table 2-1 Researches Related to Location-based advertising .... .... .. 8 Table 2-2 Application of Cognition-Affect-Behavior (C-A-B) Model .... .. 11 Table 3-1 Definitions of Constructs in This Study .... .... ... 36 Table 3-2 Research Hypotheses .... .... .... ... 37 Table 3-3 Result of Reliability Analysis (n=105) .... .... ... 45 Table 4-1 Demographic Statistics of Samples (n=579) .... .... .. 51 Table 4-2 Respondents’ Experience in LBA Usage .... .... ... 51 Table 4-3 Descriptive Analysis of Scale on Each Variable (n=579) .... ... 52 Table 4-4 Result of Confirmatory Factor Analysis (n=579) .... .... .. 55 Table 4-5 Result of Measurement Model Fit of CFA .... .... .. 57 Table 4-6 Result of Convergent Validity and Reliability Analyses .... ... 59 Table 4-7 Result of Discriminant Validity Analysis .... .... .... 60 Table 4-8 Model Fit of SEM Full Model .... .... .... .. 61 Table 4-9 Result of SEM Path Analysis .... .... .... .. 61 Table 4-10 Moderating Effect of Pull and Push type of LBA .... .... .. 64 Table 4-11 Summary of Hypotheses Testing .... .... .... . 65 List of Figures Figure 1-1 Research Process .... .... .... ..... 5 Figure 2-1 Conceptual Framework .... .... .... .. 26 Figure 4-1 Measurement Model .... .... .... .... 58 Figure 4-2 Result of SEM Full Model .... .... .... .. 63

    Ahn, H., Kwolek, E. A., & Bowman, N. D. (2015). Two faces of narcissism on SNS: The distinct effects of vulnerable and grandiose narcissism on SNS privacy control. Computers in Human Behavior, 45, 375-381.
    Awad, N. F., & Krishnan, M. S. (2006). The personalization privacy paradox: an empirical evaluation of information transparency and the willingness to be profiled online for personalization. MIS Quarterly, 30(1), 13-28.
    Bakker, I., van der Voordt, T., Vink, P., & de Boon, J. (2014). Pleasure, arousal, dominance: Mehrabian and Russell revisited. Current Psychology, 33(3), 405-421.
    Bansal, G., Zahedi, F. M., & Gefen, D. (2016). Do context and personality matter? Trust and privacy concerns in disclosing private information online. Information & Management, 53(1), 1-21.
    Bauer, H. H., Barnes, S. J., Reichardt, T., & Neumann, M. M. (2005). Driving consumer acceptance of mobile marketing: a theoretical framework and empirical study. Journal of Electronic Commerce Research, 6(3), 181-192.
    Belanche, D., Casaló, L. V., Flavián, C., & Schepers, J. (2014). Trust transfer in the continued usage of public e-services. Information & Management, 51(6), 627-640.
    Bilgihan, A., Nusair, K., Okumus, F., & Cobanoglu, C. (2015). Applying flow theory to booking experiences: An integrated model in an online service context. Information & Management, 52(6), 668-678.
    Blázquez, M. (2014). Fashion shopping in multichannel retail: The role of technology in enhancing the customer experience. International Journal of Electronic Commerce, 18(4), 97-116.
    Breckler, S. J. (1984). Empirical validation of affect, behavior, and cognition as distinct components of attitude. Journal of Personality and Social Psychology, 47(6), 1191-1205.
    Bruner, G. C., & Kumar, A. (2007). Attitude toward location-based advertising. Journal of Interactive Advertising, 7(2), 3-15.
    Carlson, J. R., & Zmud, R. W. (1999). Channel expansion theory and the experiential nature of media richness perceptions. Academy of Management Journal, 42(2), 153-170.
    Casaló, L. V., Flavián, C., Guinalíu, M., & Ekinci, Y. (2015). Do online hotel rating schemes influence booking behaviors?. International Journal of Hospitality Management, 49, 28-36.
    Chang, S. H., Chih, W. H., Liou, D. K., & Hwang, L. R. (2014). The influence of web aesthetics on customers’ PAD. Computers in Human Behavior, 36, 168-178.
    Cheung, C. M., Lee, M. K., & Rabjohn, N. (2008). The impact of electronic word-of-mouth: The adoption of online opinions in online customer communities. Internet Research, 18(3), 229-247.
    Chiu, C. M., Wang, E. T., Fang, Y. H., & Huang, H. Y. (2014). Understanding customers' repeat purchase intentions in B2C e‐commerce: the roles of utilitarian value, hedonic value and perceived risk. Information Systems Journal, 24(1), 85-114.
    Choi, S. M., & Rifon, N. J. (2002). Antecedents and consequences of web advertising credibility: A study of consumer response to banner ads. Journal of Interactive Advertising, 3(1), 12-24.
    CLICKFORCE’s survey (2015). Retrieved from http://www.clickforce.com.tw/newspaper/Report/2015Q1.pdf
    Daft, R. L., & Lengel, R. H. (1984). Information richness: A new approach to managerial behavior and organizational design. In B. M. Staw & J. L. Cummings (Eds.). Research in organization behavior (Vol. 6). Greenwich, CT: JAI.
    Daft, R. L., Lengel, R. H., & Trevino, L. K. (1987). Message equivocality, media selection, and manager performance: Implications for information systems. MIS Quarterly, 11(3), 355-366.
    Dennis, A. R., & Kinney, S. T. (1998). Testing media richness theory in the new media: The effects of cues, feedback, and task equivocality. Information Systems Research, 9(3), 256-274.
    Dhar, R., & Wertenbroch, K. (2000). Consumer choice between hedonic and utilitarian goods. Journal of Marketing Research, 37(1), 60-71.
    Dhar, S., & Varshney, U. (2011). Challenges and business models for mobile location-based services and advertising. Communications of the ACM, 54(5), 121-128.
    Drossos, D. A., Giaglis, G. M., Vlachos, P. A., Zamani, E. D., & Lekakos, G. (2013). Consumer responses to SMS advertising: Antecedents and consequences. International Journal of Electronic Commerce, 18(1), 105-136.
    Ducoffe, R. H. (1996). Advertising value and advertising on the web. Journal of Advertising Research, 36(5), 21-35.
    Dunaetz, D. R., Lisk, T. C., & Shin, M. M. (2015). Personality, gender, and age as predictors of media richness preference. Advances in Multimedia, 2015, 1-9.
    Eroglu, S. A., Machleit, K. A., & Davis, L. M. (2001). Atmospheric qualities of online retailing: a conceptual model and implications. Journal of Business Research, 54(2), 177-184.
    Gao, T. T., Rohm, A. J., Sultan, F., & Pagani, M. (2013). Consumers un-tethered: A three-market empirical study of consumers' mobile marketing acceptance. Journal of Business Research, 66(12), 2536-2544.
    Gazley, A., Hunt, A., & McLaren, L. (2015). The effects of location-based-services on consumer purchase intention at point of purchase. European Journal of Marketing, 49(9/10), 1686-1708.
    Greenaway, K. E., Chan, Y. E., & Crossler, R. E. (2015). Company information privacy orientation: a conceptual framework. Information Systems Journal, 25(6), 579-606.
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (Vol. 6). Upper Saddle River, NJ: Pearson Prentice Hall.
    Ho, S. Y. (2012). The effects of location personalization on individuals' intention to use mobile services. Decision Support Systems, 53(4), 802-812.
    Hoffman, D. L., Novak, T. P., & Peralta, M. A. (1999). Information privacy in the marketspace: Implications for the commercial uses of anonymity on the Web. The Information Society, 15(2), 129-139.
    Hu, T., Kettinger, W. J., & Poston, R. S. (2015). The effect of online social value on satisfaction and continued use of social media. European Journal of Information Systems, 24(4), 391-410.
    Hui, M. K., & Bateson, J. E. (1991). Perceived control and the effects of crowding and consumer choice on the service experience. Journal of Consumer Research, 18(2), 174-184.
    INSIGHTXPLORER’s Biweekly (2014). Retrieved from http://www.ixresearch.com/reports/%E5%89%B5%E5%B8%82%E9%9A%9B%E9%9B%99%E9%80%B1%E5%88%8A%E7%AC%AC%E4%BA%8C%E5%8D%81%E4%B8%80%E6%9C%9F-20140715/
    Izard CE (1997). Human emotions. NY: Plenum.
    Kang, J. Y. M., Mun, J. M., & Johnson, K. K. (2015). In-store mobile usage: Downloading and usage intention toward mobile location-based retail apps. Computers in Human Behavior, 46, 210-217.
    Kim, J. U., Kim, W. J., & Park, S. C. (2010). Consumer perceptions on web advertisements and motivation factors to purchase in the online shopping. Computers in Human Behavior, 26(5), 1208-1222.
    Kim, W. G., & Moon, Y. J. (2009). Customers’ cognitive, emotional, and actionable response to the servicescape: A test of the moderating effect of the restaurant type. International Journal of Hospitality Management, 28(1), 144-156.
    Kim, Y. J., & Han, J. (2014). Why smartphone advertising attracts customers: A model of Web advertising, flow, and personalization. Computers in Human Behavior, 33, 256-269.
    Koo, D. M., & Lee, J. H. (2011). Inter-relationships among dominance, energetic and tense arousal, and pleasure, and differences in their impacts under online vs. offline environment. Computers in Human Behavior, 27(5), 1740-1750.
    Korgaonkar, P. K., & Wolin, L. D. (1999). A multivariate analysis of web usage. Journal of Advertising Research, 39, 53-68.
    Lee, H. J., & Goudeau, C. (2014). Consumers’ beliefs, attitudes, and loyalty in purchasing organic foods: the standard learning hierarchy approach. British Food Journal, 116(6), 918-930.
    Lee, J. S., Hsu, L. T., Han, H., & Kim, Y. (2010). Understanding how consumers view green hotels: how a hotel's green image can influence behavioural intentions. Journal of Sustainable Tourism, 18(7), 901-914.
    Lee, M. K., Cheung, C. M., & Chen, Z. (2007). Understanding user acceptance of multimedia messaging services: An empirical study. Journal of the American Society for Information Science and Technology, 58(13), 2066-2077.
    Lee, M. K., Shi, N., Cheung, C. M., Lim, K. H., & Sia, C. L. (2011). Consumer's decision to shop online: The moderating role of positive informational social influence. Information & Management, 48(6), 185-191.
    Lim, J. S., Ri, S. Y., Egan, B. D., & Biocca, F. A. (2015). The cross-platform synergies of digital video advertising: Implications for cross-media campaigns in television, Internet and mobile TV. Computers in Human Behavior, 48, 463-472.
    Limpf, N., & Voorveld, H. A. (2015). Mobile location-based advertising: How information privacy concerns influence consumers' attitude and acceptance. Journal of Interactive Advertising, 1-13.
    Lin, H., Fan, W., & Chau, P. Y. (2014). Determinants of users’ continuance of social networking sites: A self-regulation perspective. Information & Management, 51(5), 595-603.
    Liu, C. L., Sinkovics, R. R., Pezderka, N., & Haghirian, P. (2012). Determinants of consumer perceptions toward mobile advertising—a comparison between Japan and Austria. Journal of Interactive Marketing, 26(1), 21-32.
    Loureiro, S. M. C., & Ribeiro, L. (2014). Virtual atmosphere: The effect of pleasure, arousal, and delight on word-of-mouth. Journal of Promotion Management, 20(4), 452-469.
    MacKenzie, S. B., & Lutz, R. J. (1989). An empirical examination of the structural antecedents of attitude toward the ad in an advertising pretesting context. The Journal of Marketing, 48-65.
    Malhotra, N. K., Kim, S. S., & Agarwal, J. (2004). Internet users' information privacy concerns (IUIPC): The construct, the scale, and a causal model. Information Systems Research, 15(4), 336-355.
    Martí Parreño, J., Sanz-Blas, S., Ruiz-Mafé, C., & Aldás-Manzano, J. (2013). Key factors of teenagers' mobile advertising acceptance. Industrial Management & Data Systems, 113(5), 732-749.
    Mehrabian, A. (1996). Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in temperament. Current Psychology, 14(4), 261-292.
    Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. Cambridge, MA: the MIT Press.
    Mir, I. (2011). Consumer Attitude towards M-Advertising Acceptance: A Cross-Sectional Study. Journal of Internet Banking and Commerce, 16(1), 1-23.
    Muk, A., & Chung, C. (2014). Driving Consumers to become fans of brand pages: A Theoretical Framework. Journal of Interactive Advertising, 14(1), 1-10.
    National Development Council’s report (2015, December 21). Retrieved from http://www.ndc.gov.tw/News_Content.aspx?n=114AAE178CD95D4C&s=D1F0936A870F828C
    Ogara, S. O., Koh, C. E.,2 & Prybutok, V. R. (2014). Investigating factors affecting social presence and user satisfaction with Mobile Instant Messaging. Computers in Human Behavior, 36, 453-459.
    Oh, L. B., & Xu, H. (2003). Effects of multimedia on mobile consumer behavior: An empirical study of location-aware advertising. ICIS 2003 Proceedings, 56.679-691.
    Pan, Y., & Zinkhan, G. M. (2006). Exploring the impact of online privacy disclosures on consumer trust. Journal of Retailing, 82(4), 331-338.
    Russell, J. A., & Pratt, G. (1980). A description of the affective quality attributed to environments. Journal of Personality and Social Psychology, 38(2), 311.
    Smit, E. G., Van Noort, G., & Voorveld, H. A. (2014). Understanding online behavioural advertising: User knowledge, privacy concerns and online coping behaviour in Europe. Computers in Human Behavior, 32, 15-22.
    Su, W. B. (2015, July 20). 資策會調查:國內行動裝置用戶已超過1600萬. iThome. Retrieved from http://www.ithome.com.tw/news/97479
    Sun, Y., Wang, N., Shen, X. L., & Zhang, J. X. (2015). Location information disclosure in location-based social network services: Privacy calculus, benefit structure, and gender differences. Computers in Human Behavior, 52, 278-292.
    Thayer, R. E. (1978). Toward a psychological theory of multidimensional activation (arousal). Motivation and Emotion, 2(1), 1-34.
    Tsang, M. M., Ho, S. C., & Liang, T. P. (2004). Consumer attitudes toward mobile advertising: An empirical study. International Journal of Electronic Commerce, 8(3), 65-78.
    Tucker, C. E. (2014). Social networks, personalized advertising, and privacy controls. Journal of Marketing Research, 51(5), 546-562.
    U.S. Department of Justice, Privacy and Civil Liberties Policy Development Guide and Implementation Templates Overview. Washington, DC. Retrieved from https://it.ojp.gov/privacy206/introduction.htm
    Ul Haq, Z. (2012). Attitude toward SMS advertising: A survey with reference to Indian consumers. Journal of Internet Commerce, 11(4), 271-290.
    Unni, R. & Harmon, R. (2003). Location-based services: models for strategy development in m-commerce. In Management for Reshaping the World. Portland International Conference on Management of Engineering and Technology (PICMET'03). (pp. 416-424).
    Unni, R., & Harmon, R. (2007). Perceived effectiveness of push vs. pull mobile location based advertising. Journal of Interactive Advertising, 7(2), 28-40.
    Wu, C. S., Cheng, F. F., & Yen, D. C. (2008). The atmospheric factors of online storefront environment design: An empirical experiment in Taiwan. Information & Management, 45(7), 493-498.
    Wu, J. J., & Tsang, A. S. (2008). Factors affecting members' trust belief and behaviour intention in virtual communities. Behaviour & Information Technology,27(2), 115-125.
    Wu, K. W., Huang, S. Y., Yen, D. C., & Popova, I. (2012). The effect of online privacy policy on consumer privacy concern and trust. Computers in Human Behavior, 28(3), 889-897.
    Xu, H., Dinev, T., Smith, H. J., & Hart, P. (2008). Examining the formation of individual's privacy concerns: toward an integrative view. ICIS 2008 proceedings, 6.
    Yani‐de‐Soriano, M., Foxall, G. R., & Newman, A. J. (2013). The impact of the interaction of utilitarian and informational reinforcement and behavior setting scope on consumer response. Psychology & Marketing, 30(2), 148-159.
    Yeh, C. H. (2015). The effect of consumption value and cognitive benefit on brand switching behavior on smartphone: switching cost as moderator. Unpublished master’s thesis, National Cheng Kung University, Tainan, Taiwan.
    Yoo, C. W., Kim, Y. J., & Sanders, G. L. (2015). The impact of interactivity of electronic word of mouth systems and E-Quality on decision support in the context of the e-marketplace. Information & Management, 52(4), 496-505.
    Zha, X., Li, J., & Yan, Y. (2015). Advertising value and credibility transfer: attitude towards web advertising and online information acquisition. Behaviour & Information Technology, 34(5), 520-532.
    Zhao, L., Lu, Y., & Gupta, S. (2012). Disclosure intention of location-related information in location-based social network services. International Journal of Electronic Commerce, 16(4), 53-90.

    無法下載圖示 校內:2021-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE