| 研究生: |
徐靖為 Hsu, Ching-Wei |
|---|---|
| 論文名稱: |
齊次基底移動最小二乘法在複合桿件扭轉上之應用 Analysis of Torsion of Composite Bars by the Moving Least Square Method with Homogeneous Base |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 移動最小二乘法 、無元素法 、複合扭轉 |
| 外文關鍵詞: | moving least square method, meshless method, complex torsion |
| 相關次數: | 點閱:63 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用齊次基底移動最小二乘法(Moving Least Square Method with Homogeneous Base)來分析二維扭轉問題。本方法在局部區域以滿足微分方程式之函數為基底函數,由離散點上之函數近似以及邊界條件,採用移動最小二乘法建立近似函數,最後由節點值與近似函數之一致性條件,即可求出在節點上之近似值,進而求得邊界值問題之近似解。本文最後以橢圓形、正三角形和矩形等斷面之均質桿件受扭問題與矩形和圓形等斷面之複合桿件受扭問題作為計算範例,並且與解析解進行比較和分析數值收斂結果來驗證及討論本文方法之正確性與可行性。
In this paper, we present a Moving Least Square Method with Homogeneous Base for solving the torsional problems. The novelty of this method is that, in the local area using the basis function which satisfied the governing equation, we attempt to reduce the weighted sum of the residuals that results from the approximation to the field variable and the boundary conditions. The process leads to an interpolation expressed in terms of the nodal value of the field variable. According to the requirement of consistency of the interpolation function with its value at nodes, the point collocation technique was employed to determine the unknown nodal values, and thus the approximate solution can be obtained. The accuracy and the rate of convergency of this method can be demonstrated by various examples including the problems of torsion of elastic shaft or composite bars.
參考文獻
[1] L.B. Lucy(1977), “A numerical approach to the testing of the fission hypothesis”, The Astronomical Journal, 82, pp.1013-1024.
[2] B. Nayroles, G. Touzot & P. Villon(1992), “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Elements”, Computational Mechanics, 10, pp.307-318.
[3] T. Belytschko, Y. Y. Lu & L. Gu(1994), “Element-Free Galerkin Methods”, International Journal for Numerical Methods in Engineering, 37, pp.229-256.
[4] T. Belytschko, L. Gu & Y. Y. Lu(1994), “Fracture and crack growth by element free Galerkin methods”, Modelling and Simulation in Materials Science and Engineering, 2, pp.519-534.
[5] T. Belytschko, Y. Y. Lu & L. Gu(1995), “Crack propagation by element- free Galerkin methods”, Engineering Fracture Mechanics, 51(2), pp.295-315.
[6] W.K. Liu, S. Jun & Y.F. Zhang(1995), “Reproducing Kernel Particle Methods”, International Journal for Numerical Methods in Engineering, 20, pp.1081-1106.
[7] J.S. Chen, C.T. Wu, W.K. Liu(1996), “ Reproducing Kernel Particle Methods for Large Deformation Analysis of Non-linear Structures”, Computer methods in Applied Mechanics And Engineering, 139, pp.195-227.
[8] E. Oñate , S. Idelsohn , O. C. Zienkiewicz , R. L. Taylor & C. Sacco(1996), “
A stabilized finite point method for analysis of fluid mechanics problems”, Computer methods in Applied Mechanics And Engineering, 139, pp.315-346.
[9] T. Zhu, J.D. Zhang, S.N. Atluri(1998), “A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems”, Computational Mechanics, 22, pp.174-186
[10] S.N. Atluri, T. Zhu(1998), “A New Meshless Local Petrov-Galerkin (MLPG) Approach in Computational Mechanics”, Computational Mechanics, 22, pp.117-127.
[11] S. Li, W. Hao, W.K. Liu(2000), “Numerical simulations of large deformation of thin shell structures using meshfree methods”, Computational Mechanics, 25, pp.102-116.
[12] 盛若磐(2000),元素釋放法積分法則與權函數之改良,近代工程計算論壇論文集,國立中央大學土木系。
[13] Y.M. Wang, S.M. Chen & C.P. Wu(2010), “A Meshless Collocation Method Basedon the Differential Reproducing Kernel Interpolation”, Computational Mechanics, 45, pp.585-606.
[14] S.W. Yang, Y.M. Wang, C.P. Wu & H.T. Hu(2010), “A Meshless Collocation method Meshless Collocation Method Based on the Differential Reproducing Kernel Approximation”, Computer Modeling in Engineering & Sciences, 60, pp.1-39.
[15] S.M. Chen, C.P. Wu & Y.M. Wang(2011), “A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli–Euler beams and Kirchhoff–Love plates”, Computational Mechanics, 47, pp.425-453.
[16] T. Belytschko,Y. Krongauz,D. Oragn,M. Feleming & P. Krysl (1996) , “Meshless methods: An overview and recent developments”, Computer Methods in Applied Mechanics & Engineering, 139, pp.3-47.
[17] P. Krysl & T. Belytschko (2001), “ESFLIB: A library to compute the element free Galerkinshape functions”, Computer Methods in Applied Mechanics & Engineering, 190, pp.2181-2205.
[18] Martin H. Sadd(2005), Elasticity: Theory, Applications, and Numerics, Amsterdam: Elsevier.
[19] N.I. Muskhelishvili(1953), Some Basic Problems of the Mathematical theory of Elasticity, Gronongen:P. Noordhoff.
[20] 黃建碩(2010),最小移動二乘法,國立成功大學土木工程研究所碩士論文。
[21] 蔡孟政(2010),複合圓桿扭轉問題之解析,國立成功大學土木工程研究所碩士論文。