簡易檢索 / 詳目顯示

研究生: 許瓊文
Hsu, Chiung-Wen
論文名稱: 碳氮共摻雜之次微米球珠特性以及其在可撓式染料敏化太陽能電池之應用
Carbon and Nitrogen Co-doped TiO2 Submicrometer-sized Beads for Flexible Dye-sensitized Solar Cells
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 126
中文關鍵詞: 碳摻雜氮摻雜二氧化鈦次微米球珠
外文關鍵詞: Carbon doped, Nitrogen doped, TiO2, Submicrometer-sized beads
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用hexamethylenetetramine (HMT)作為摻雜來源,透過快速微波輔助水熱製程製得具有高比面積以及擁有可見光活性的碳或氮摻雜的二氧化鈦次微米球珠。在不同水熱溫度與持溫時間參數的影響下,次微米球珠所展現的形貌、尺寸、晶相結構、表面的化學鍵結形式、比表面積、光學等特性,本研究將會詳細的分析討論。從實驗結果可觀察到不具摻雜的次微米球珠其吸收邊緣座落在紫外光區;而碳或氮摻雜的二氧化鈦次微米球珠其吸收邊緣則有往可見光波長偏移的趨勢。本研究將得到的球珠作為光電極的材料並且組裝成完全可撓式的染料敏化太陽能電池(FDSCs)。藉由太陽光模擬器(solar simulator)、電化學阻抗分析(EIS)、intensity modu1ated photocurrent spectroscopy/photovoltage spectroscopy (IMPS/VS)、光電轉換效率分析(IPCE)來探討FDSCs的效能與光化學特性。此外,碳或氮摻雜次微米球珠光電極的總光吸收度以及染料分子的脫附量也可從UV-Vis分析結果計算得到。本研究使用碳或氮摻雜次微米球珠作為光電極其整體效率與IPCE的表現性確實比不具摻雜的次微米球珠和商用P25的光電極來的優異。

    Carbon and/or nitrogen doped TiO2 submicrometer-sized beads with high surface areas and visible-light activity was systhesized using the hexamethylenetetramine (HMT) as dopant through a microwave-assisted hydrothermal synthetic route. The effects of hydrothermal temperature and reaction time on the characteristics of carbon and/or nitrogen doped TiO2 submicrometer-sized beads, such as size, crystallinity, surface oxidation state, specific surface area and optical properties, were studied. Compared to the undoped one, the absorbance edge of carbon and/or nitrogen doped TiO2 shifts towards a higher wavelength region. The resulting beads were employed as a new photoelectrode material for use in all-plastic flexible dye-sensitized solar cells (FDSCs). FDSCs were examined using solar simulator, electrochemical impedance spectroscopy (EIS), intensity modulated photocurrent spectroscopy (IMPS), intensity modulated photovoltage spectroscopy (IMVS) and incident photo to current conversion efficiency (IPCE). The total light absorbance and the amount of dye loading of the carbon and/or nitrogen doped TiO2 photoelectrode were also obtained. It was also found that the cells having a carbon and/or nitrogen doped TiO2 photoelectrode have better overall efficiency and IPCE compared to those based on undoped TiO2 beads and commercial P25.

    目錄 摘要………………………………………………………………………I Abstract…………………………………………………………………II 誌謝……………………………………………………………………III 目錄………………………………………………………………………IV 表目錄 VIII 第一章緒論 1 1.1 前言 1 1.2 研究背景與目的 5 第二章文獻回顧 9 2.1 染料敏化太陽能電池 9 2.1.1 染料敏化太陽能電池工作原理 9 2.1.2 染料光敏化劑 11 2.1.3 二氧化鈦奈米晶體光電極 15 2.1.4 電解質 20 2.1.5 對電極 22 2.2 水熱法 23 2.2.1 傳統水熱法與微波輔助水熱法介紹 23 2.2.2 微波輔助加熱原理[43, 44] 25 2.2.3 水熱法長晶理論 27 第三章實驗方法與分析儀器原理 29 3.1 實驗藥品與器材 29 3.2 實驗設計與流程 30 3.3 碳氮共摻雜二氧化鈦次微米球珠製備 31 3.4 粉末相關分析技術 34 3.4.1 XRD晶體結構分析 34 3.4.2 Raman分析 36 3.4.3 SEM 形貌分析 37 3.4.4 XPS化學鍵結分析 37 3.4.5 UV-Vis光學分析 38 3.4.6 BET/BJH分析 38 3.4.7 紅外線光譜分析 39 3.5 染料敏化太陽能電池 40 3.5.1 光電極製備 40 3.5.2 染料配製與吸附 40 3.5.3 電解液的配製 41 3.5.4 對電極的配製 41 3.5.5 電池的組裝 41 3.6 染料敏化太陽能電池分析技術 43 3.6.1 效率量測 43 3.6.2 EIS分析 45 3.6.3 IMPS/VS分析 47 3.6.4 IPCE量子效率分析 48 第四章結果與討論 50 4.1 調變水熱參數對二氧化鈦次微米球珠的影響以及對FDSCs的探討 51 4.1.1 XRD晶體結構分析 51 4.1.2 Raman光譜分析 58 4.1.3 粉末形貌分析 62 4.1.4 XPS化學鍵結分析與紅外線光譜分析 69 4.1.5 UV-Vis光學分析 82 4.1.6 比表面積分析與BJH孔徑分析 86 4.2 不同製程溫度對FDSCs的影響 89 4.2.1 光吸收分析 90 4.2.2 效率測試分析 94 4.2.3 IMPS/VS與EIS電化學分析 97 4.2.4 量子效率(IPCE)分析 101 4.3 不同製程時間對FDSCs的影響 104 4.3.1 光吸收分析 105 4.3.2 效率測試分析 108 4.3.3 IMPS/VS與EIS電化學分析 110 4.3.4 量子效率(IPCE) 112 第五章結論 114 第六章參考文獻 116 附錄 124 自述 126

    [1] A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells, Chem Rev, 110 (2010) 6595-6663.
    [2] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 39), Progress in Photovoltaics: Research and Applications, 20 (2012) 12-20.
    [3] L. Huaping, H. Zhibing, W. Weidong, X. Hua, Z. Baoling, S. Ping, C. Jiajun, J. Xueyin, Research Progress in Silicon Series Solar Thin Film Battery, Materials Review, 3 (2008).
    [4] B. Oregan, M. Gratzel, A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films, Nature, 353 (1991) 737-740.
    [5] F. Pichot, J.R. Pitts, B.A. Gregg, Low-temperature sintering of TiO2 colloids: Application to flexible dye-sensitized solar cells, Langmuir, 16 (2000) 5626-5630.
    [6] J. Zhang, Z. Zhao, X. Wang, T. Yu, J. Guan, Z. Yu, Z. Li, Z. Zou, Increasing the Oxygen Vacancy Density on the TiO2 Surface by La-Doping for Dye-Sensitized Solar Cells, The Journal of Physical Chemistry C, 114 (2010) 18396-18400.
    [7] M. Mosaddeq-ur-Rahman, K. Murali Krishna, T. Miki, T. Soga, K. Igarashi, S. Tanemura, M. Umeno, Investigation of solid state Pb doped TiO2 solar cell, Solar Energy Materials and Solar Cells, 48 (1997) 123-130.
    [8] J. Liu, H. Yang, W. Tan, X. Zhou, Y. Lin, Photovoltaic performance improvement of dye-sensitized solar cells based on tantalum-doped TiO2 thin films, Electrochimica Acta, 56 (2010) 396-400.
    [9] Z.B. Wu, F. Dong, W.R. Zhao, H.Q. Wang, Y. Liu, B.H. Guan, The fabrication and characterization of novel carbon doped TiO(2) nanotubes, nanowires and nanorods with high visible light photocatalytic activity, Nanotechnology, 20 (2009).
    [10] S. Lee, I.S. Cho, D.K. Lee, D.W. Kim, T.H. Noh, C.H. Kwak, S. Park, K.S. Hong, J.K. Lee, H.S. Jung, Influence of nitrogen chemical states on photocatalytic activities of nitrogen-doped TiO(2) nanoparticles under visible light, Journal of Photochemistry and Photobiology a-Chemistry, 213 (2010) 129-135.
    [11] M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffmann, Oxidative power of nitrogen-doped TiO(2) photocatalysts under visible illumination, Journal of Physical Chemistry B, 108 (2004) 17269-17273.
    [12] M. Sathish, B. Viswanathan, R.P. Viswanath, C.S. Gopinath, Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst, Chem Mater, 17 (2005) 6349-6353.
    [13] Y. Cong, J.L. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity, Journal of Physical Chemistry C, 111 (2007) 6976-6982.
    [14] D.E. Gu, Y. Lu, B.C. Yang, Y.D. Hu, Facile preparation of micro-mesoporous carbon-doped TiO(2) photocatalysts with anatase crystalline walls under template-free condition, Chem. Commun., (2008) 2453-2455.
    [15] T.L. Ma, M. Akiyama, E. Abe, I. Imai, High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode, Nano Letters, 5 (2005) 2543-2547.
    [16] J. Zhang, Q. Sun, J. Zheng, X.N. Zhang, Y.Z. Cui, P.Q. Wang, W.P. Li, Y.J. Zhu, The characterization of nitrogen doped TiO(2) photoanodes and its application in the dye sensitized solar cells, J Renew Sustain Ener, 3 (2011).
    [17] D.B. Chu, X.M. Yuan, G.X. Qin, M. Xu, P. Zheng, J. Lu, L.W. Zha, Efficient carbon-doped nanostructured TiO2 (anatase) film for photoelectrochemical solar cells, J Nanopart Res, 10 (2008) 357-363.
    [18] Y. Lin, L. Yang, J.G. Jia, X.R. Xiao, X.P. Li, X.W. Zhou, Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres, Journal of Power Sources, 182 (2008) 370-376.
    [19] S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, Influence of scattering layers on efficiency of dye-sensitized solar cells, Solar Energy Materials and Solar Cells, 90 (2006) 1176-1188.
    [20] A. Usami, Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells, Solar Energy Materials and Solar Cells, 64 (2000) 73-83.
    [21] D.H. Chen, F.Z. Huang, Y.B. Cheng, R.A. Caruso, Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells, Advanced Materials, 21 (2009) 2206-+.
    [22] C.R. Ke, L.C. Chen, J.M. Ting, Photoanodes Consisting of Mesoporous Anatase TiO2 Beads with Various Sizes for High-Efficiency Flexible Dye-Sensitized Solar, Journal of Physical Chemistry C, 116 (2012) 2600-2607.
    [23] L. Kavan, J.H. Yum, M. Gratzel, Optically Transparent Cathode for Dye-Sensitized Solar Cells Based on Graphene Nanoplatelets, Acs Nano, 5 (2011) 165-172.
    [24] Q.F. Zhang, G.Z. Cao, Nanostructured photoelectrodes for dye-sensitized solar cells, Nano Today, 6 (2011) 91-109.
    [25] E.K. Putzeiko, A.N. Terenin, Photosensitization of the internal photoeffect in zinc oxide and other semiconductors by adsorbed dyes
    zhurnal fizicheskoi khimii, 23 (1949) 676-688.
    [26] M.K. Nazeeruddin, P. Pechy, M. Gratzel, Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex, Chem Commun, (1997) 1705-1706.
    [27] A. Hagfeldt, M. Gratzel, Molecular photovoltaics, Accounts Chem Res, 33 (2000) 269-277.
    [28] N. Cai, S.J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, M. Gratzel, An Organic D-pi-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells, Nano Lett, 11 (2011) 1452-1456.
    [29] A. Mishra, M.K.R. Fischer, P. Bauerle, Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules, Angew Chem Int Edit, 48 (2009) 2474-2499.
    [30] N.G. Park, J. van de Lagemaat, A.J. Frank, Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells, J Phys Chem B, 104 (2000) 8989-8994.
    [31] M. Adachi, Y. Murata, J. Takao, J.T. Jiu, M. Sakamoto, F.M. Wang, Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism, J Am Chem Soc, 126 (2004) 14943-14949.
    [32] J.T. Jiu, S. Isoda, F.M. Wang, M. Adachi, Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film, J Phys Chem B, 110 (2006) 2087-2092.
    [33] C.W. Shi, S.Y. Dai, K.J. Wang, X. Pan, L.Y. Zeng, L.H. Hu, F.T. Kong, L. Guo, Influence of various cations on redox behavior of I- and I-3(-) and comparison between KI complex with 18-crown-6 and L1,2-dimethyl-3-propylimidazolium iodide in dye-sensitized solar cells, Electrochim Acta, 50 (2005) 2597-2602.
    [34] G.R.A. Kumara, S. Kaneko, M. Okuya, K. Tennakone, Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a CuI crystal growth inhibitor, Langmuir, 18 (2002) 10493-10495.
    [35] Q.B. Meng, K. Takahashi, X.T. Zhang, I. Sutanto, T.N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori, M. Uragami, Fabrication of an efficient solid-state dye-sensitized solar cell, Langmuir, 19 (2003) 3572-3574.
    [36] U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature, 395 (1998) 583-585.
    [37] A. Hauch, A. Georg, Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells, Electrochim Acta, 46 (2001) 3457-3466.
    [38] T.N. Murakami, S. Ito, Q. Wang, M.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, M. Gratzel, Highly efficient dye-sensitized solar cells based on carbon black counter electrodes, J Electrochem Soc, 153 (2006) A2255-A2261.
    [39] G.A. Tompsett, W.C. Conner, K.S. Yngvesson, Microwave synthesis of nanoporous materials, Chemphyschem, 7 (2006) 296-319.
    [40] S. Komarneni, R. Roy, Q.H. Li, Microwave-hydrothermal synthesis of ceramic powders, Materials Research Bulletin, 27 (1992) 1393-1405.
    [41] F.J. Berry, L.E. Smart, P.S.S. Prasad, N. Lingaiah, P.K. Rao, Microwave heating during catalyst preparation: influence on the hydrodechlorination activity of alumina-supported palladium-iron bimetallic catalysts, Appl Catal a-Gen, 204 (2000) 191-201.
    [42] G.J. Wilson, A.S. Matijasevich, D.R.G. Mitchell, J.C. Schulz, G.D. Will, Modification of TiO2 for enhanced surface properties: Finite Ostwald ripening by a microwave hydrothermal process, Langmuir, 22 (2006) 2016-2027.
    [43] M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, C.O. Kappe, Microwave-Assisted Synthesis of Colloidal Inorganic Nanocrystals, Angew Chem Int Edit, 50 (2011) 11312-11359.
    [44] C. Gabriel, S. Gabriel, E.H. Grant, B.S.J. Halstead, D.M.P. Mingos, Dielectric parameters relevant to microwave dielectric heating, Chem Soc Rev, 27 (1998) 213-223.
    [45] J.O. Eckert, C.C. HungHouston, B.L. Gersten, M.M. Lencka, R.E. Riman, Kinetics and mechanisms of hydrothermal synthesis of barium titanate, J Am Ceram Soc, 79 (1996) 2929-2939.
    [46] T.P. Chou, Q.F. Zhang, B. Russo, G.E. Fryxell, G.Z. Cao, Titania particle size effect on the overall performance of dye-sensitized solar cells, J Phys Chem C, 111 (2007) 6296-6302.
    [47] Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, W. Choi, Carbon-doped TiO(2) photocatalyst synthesized without using an external carbon precursor and the visible light activity, Appl Catal B-Environ, 91 (2009) 355-361.
    [48] X.S. Ye, J. Sha, Z.K. Jiao, L.D. Zhang, Thermoanalytical characteristic of nanocrystalline brookite-based titanium dioxide, Nanostruct Mater, 8 (1997) 919-927.
    [49] T. Ohsaka, F. Izumi, Y. Fujiki, Raman-Spectrum of Anatase, Tio2, J Raman Spectrosc, 7 (1978) 321-324.
    [50] M.P. Moret, R. Zallen, D.P. Vijay, S.B. Desu, Brookite-rich titania films made by pulsed laser deposition, Thin Solid Films, 366 (2000) 8-10.
    [51] W. Guo, Y.H. Shen, G. Boschloo, A. Hagfeldt, T.L. Ma, Influence of nitrogen dopants on N-doped TiO(2) electrodes and their applications in dye-sensitized solar cells, Electrochim Acta, 56 (2011) 4611-4617.
    [52] D.H. Chen, L. Cao, F.Z. Huang, P. Imperia, Y.B. Cheng, R.A. Caruso, Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm), J Am Chem Soc, 132 (2010) 4438-4444.
    [53] M. Fusi, E. Maccallini, T. Caruso, C.S. Casari, A.L. Bassi, C.E. Bottani, P. Rudolf, K.C. Prince, R.G. Agostino, Surface electronic and structural properties of nanostructured titanium oxide grown by pulsed laser deposition, Surf Sci, 605 (2011) 333-340.
    [54] X.P. Wang, T.T. Lim, Solvothermal synthesis of C-N codoped TiO(2) and photocatalytic evaluation for bisphenol A degradation using a visible-light irradiated LED photoreactor, Appl Catal B-Environ, 100 (2010) 355-364.
    [55] H.Y. Li, D.J. Wang, H.M. Fan, P. Wang, T.F. Jiang, T.F. Xie, Synthesis of highly efficient C-doped TiO(2) photocatalyst and its photo-generated charge-transfer properties, J Colloid Interf Sci, 354 (2011) 175-180.
    [56] D.M. Chen, Z.Y. Jiang, J.Q. Geng, Q. Wang, D. Yang, Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity, Ind Eng Chem Res, 46 (2007) 2741-2746.
    [57] P. Romero-Gomez, V. Rico, A. Borras, A. Barranco, J.P. Espinos, J. Cotrino, A.R. Gonzalez-Elipe, Chemical State of Nitrogen and Visible Surface and Schottky Barrier Driven Photoactivities of N-Doped TiO(2) Thin Films, J Phys Chem C, 113 (2009) 13341-13351.
    [58] M. Sathish, B. Viswanathan, R.P. Viswanath, Characterization and photocatalytic activity of N-doped TiO(2) prepared by thermal decomposition of Ti-melamine complex, Appl Catal B-Environ, 74 (2007) 307-312.
    [59] C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi, E. Giamello, Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations, J Phys Chem B, 109 (2005) 11414-11419.
    [60] J. Fang, F. Wang, K. Qian, H.Z. Bao, Z.Q. Jiang, W.X. Huang, Bifunctional N-Doped Mesoporous TiO2 Photocatalysts, J Phys Chem C, 112 (2008) 18150-18156.
    [61] Q.Y. Wang, X.C. Yang, X.L. Wang, M. Huang, J.W. Hou, Synthesis of N-doped TiO2 mesosponge by solvothermal transformation of anodic TiO2 nanotubes and enhanced photoelectrochemical performance, Electrochimica Acta, 62 (2012) 158-162.
    [62] J.A. Rodriguez, T. Jirsak, J. Dvorak, S. Sambasivan, D. Fischer, Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and density functional studies on the formation of NO3, J Phys Chem B, 104 (2000) 319-328.
    [63] F. Esaka, K. Furuya, H. Shimada, M. Imamura, N. Matsubayashi, H. Sato, A. Nishijima, A. Kawana, H. Ichimura, T. Kikuchi, Comparison of surface oxidation of titanium nitride and chromium nitride films studied by x-ray absorption and photoelectron spectroscopy, J Vac Sci Technol A, 15 (1997) 2521-2528.
    [64] A.K. Rumaiz, J.C. Woicik, E. Cockayne, H.Y. Lin, G.H. Jaffari, S.I. Shah, Oxygen vacancies in N doped anatase TiO(2): Experiment and first-principles calculations, Appl Phys Lett, 95 (2009).
    [65] H.X. Li, J.X. Li, Y.I. Huo, Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions, J Phys Chem B, 110 (2006) 1559-1565.
    [66] Q.C. Xu, D.V. Wellia, S. Yan, D.W. Liao, T.M. Lim, T.T.Y. Tan, Enhanced photocatalytic activity of C-N-codoped TiO(2) films prepared via an organic-free approach, J Hazard Mater, 188 (2011) 172-180.
    [67] C.L. Tseng, Y.K. Chen, S.H. Wang, Z.W. Peng, J.L. Lin, 2-Ethanolamine on TiO(2) Investigated by in Situ Infrared Spectroscopy. Adsorption, Photochemistry, and Its Interaction with CO(2), J Phys Chem C, 114 (2010) 11835-11843.
    [68] C.L. Zheng, X.Y. Li, Q.D. Zhao, Z.P. Qu, X. Quan, Photo-oxidation of gas-phase cyclohexane species over nanostructured TiO(2) fabricated by different strategies, Sep Purif Technol, 67 (2009) 326-330.
    [69] J. Wang, D.N. Tafen, J.P. Lewis, Z.L. Hong, A. Manivannan, M.J. Zhi, M. Li, N.Q. Wu, Origin of Photocatalytic Activity of Nitrogen-Doped TiO2 Nanobelts, J Am Chem Soc, 131 (2009) 12290-12297.
    [70] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders, The Journal of Physical Chemistry B, 107 (2003) 5483-5486.
    [71] C. Di Valentin, G. Pacchioni, A. Selloni, Theory of carbon doping of titanium dioxide, Chem Mater, 17 (2005) 6656-6665.
    [72] M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, H.J. Whitfield, Energetics of nanocrystalline TiO2, P Natl Acad Sci USA, 99 (2002) 6476-6481.
    [73] C.C. Han, Y.P. Lin, S.Y. Ho, Y.C. Lai, S.Y. Chen, J. Huang, Y.W. Chen-Yang, Effect of ionic liquid-templated mesoporous anatase TiO2 on performance of dye-sensitized solar cell, J Phys D Appl Phys, 43 (2010).
    [74] J.T. Jiu, F.M. Wang, M. Sakamoto, J. Takao, M. Adachi, Performance of dye-sensitized solar cell based on nanocrystals TiO2 film prepared with mixed template method, Solar Energy Materials and Solar Cells, 87 (2005) 77-86.
    [75] J.G. Yu, Q.L. Li, Z. Shu, Dye-sensitized solar cells based on double-layered TiO2 composite films and enhanced photovoltaic performance, Electrochim Acta, 56 (2011) 6293-6298.
    [76] K.D. Benkstein, N. Kopidakis, J. van de Lagemaat, A.J. Frank, Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells, J Phys Chem B, 107 (2003) 7759-7767.
    [77] N. Koide, A. Islam, Y. Chiba, L.Y. Han, Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit, Journal of Photochemistry and Photobiology a-Chemistry, 182 (2006) 296-305.
    [78] J. Wu, H.Y. Li, Y. Liu, C.S. Xie, Photoconductivity and trap-related decay in porous TiO2/ZnO nanocomposites, J Appl Phys, 110 (2011).
    [79] C. Feng, H. Zhang, Y. Wang, W. Li, J. Zhou, L. Chen, L. Yu, S. Ruan, Photoelectron Properties of Nanocrystalline TiO2 Films Prepared by a Powerful Hydrothermal Technique, J Am Ceram Soc, (2012) n/a-n/a.
    [80] F.J. Knorr, C.C. Mercado, J.L. McHale, Trap-state distributions and carrier transport in pure and mixed-phase TiO2: Influence of contacting solvent and interphasial electron transfer, J Phys Chem C, 112 (2008) 12786-12794.
    [81] K. Pan, Q.L. Zhang, Q. Wang, Z.Y. Liu, D.J. Wang, J.H. Li, Y.B. Bai, The photoelectrochemical properties of dye-sensitized solar cells made with TiO2 nanoribbons and nanorods, Thin Solid Films, 515 (2007) 4085-4091.
    [82] K.P. Wang, H. Teng, Structure-intact TiO2 nanoparticles for efficient electron transport in dye-sensitized solar cells, Appl Phys Lett, 91 (2007).
    [83] P. Xiang, X. Li, H. Wang, G.H. Liu, T. Shu, Z.M. Zhou, Z.L. Ku, Y.G. Rong, M. Xu, L.F. Liu, M. Hu, Y. Yang, W. Chen, T.F. Liu, M.L. Zhang, H.W. Han, Mesoporous nitrogen-doped TiO2 sphere applied for quasi-solid-state dye-sensitized solar cell, Nanoscale Res Lett, 6 (2011).
    [84] J.S. Im, J. Yun, S.K. Lee, Y.S. Lee, Effects of multi-element dopants of TiO2 for high performance in dye-sensitized solar cells, J Alloy Compd, 513 (2012) 573-579.
    [85] K.Y. Yan, Y.C. Qiu, W. Chen, M. Zhang, S.H. Yang, A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells, Energ Environ Sci, 4 (2011) 2168-2176.
    [86] J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, S. Gimenez, Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements, Journal of Physical Chemistry C, 113 (2009) 17278-17290.

    下載圖示 校內:2017-08-16公開
    校外:2017-08-16公開
    QR CODE