簡易檢索 / 詳目顯示

研究生: 劉得成
Liu, Te-Chen
論文名稱: 雷射表面重熔法改善Alloy 82敏化覆銲層抗腐蝕行為研究
The Improvement of Corrosion Resistance of Sensitized Alloy 82 Welds Using Laser Surface Melting
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 133
中文關鍵詞: Alloy 82孔蝕枝晶間腐蝕晶界腐蝕雷射表面重熔敏化
外文關鍵詞: Alloy 82, Pitting Corrosion, Interdendritic Corrosion, Intergranular Corrosion, Laser Surface Meltin, Sensitization
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用GTAW(Gas Tungsten Arc Welding)將Alloy 82覆銲於316L SS基材上,以DL-EPR(Double Loop-Electrochemical Potentialkinetics Reactivation)評估覆銲層經固溶化處理(1050℃/0.5hr)及敏化處理(650℃/24hr)的抗腐蝕能力。再使用不同走速之LSM(Laser Surface Melting)技術進行敏化組織的修復,評估抗腐蝕能力回復的有效程度。實驗結果顯示,GTAW覆銲組織為柱狀枝晶,生成高比例的高角度(>15°)高能量晶界,富Nb、Ti之複合型析出物隨機散佈於枝晶間及晶界上且C、Nb及Ti沿枝晶間偏析,枝晶間Cr含量相較於基材明顯偏低,在腐蝕環境中容易產生孔蝕。固溶化熱處理後,能消除枝晶間偏析的現象,並使Cr重新分布,呈現均質的組織結構,即使再經敏化處理,抗腐蝕能力並未明顯改變。
    GTAW覆銲經敏化熱處理後,富Cr碳化物沿晶界析出,經DL-EPR測試結果出現再活化陽極峰,確認已形成敏化組織,腐蝕機制為晶界腐蝕、枝晶間腐蝕及孔蝕。經LSM後富Cr碳化物完全固溶回基材,重熔區生成等軸及細柱狀枝晶,且C、Nb、Ti及Cr重新分布,經DL-EPR測試結果未出現再活化陽極峰,證實LSM能有效消除敏化組織並修復抗腐蝕能力。改變雷射走速研究結果顯示,隨雷射能量密度提高,可以產生較大的修復範圍。其中雷射走速0.8m/min之能量密度達34.2J/mm2,能完全固溶表面富Nb、Ti及富Cr析出物,產生高比例的低角度(<15°)低能量晶界,抑制溶質偏析及析出物沿晶界再度析出,修復及提升Alloy 82覆銲組織抗腐蝕的能力,是較理想的LSM參數。

    Alloy 82 was over-welded on 316L SS substrates using gas tungsten arc welding (GTAW). The corrosion resistance of the over-welded layer was evaluated by double loop-electrochemical potentialkinetics reactivation test (DL-EPR) following solution annealing (1050°C/0.5hr) and sensitization treatment (650°C/24hr). The sensitized welds were repaired using Laser Surface Melting (LSM) at various speeds. The effective degree of corrosion resistance recovery was evaluated in every case. The experimental results showed that the GTAW over-welded structures consisted mainly of columnar dendrites with a high proportion of high-angle (>15°) high-energy grain boundaries. Nb- and Ti-rich composite precipitates were randomly dispersed between the interdendritc region and the grain boundaries. In addition, C, Nb and Ti segregation was observed along the dendrite boundaries. The Cr content between the interdendritc region was significantly lower than that of the substrate, and hence prompted pitting corrosion under corrosion testing. However, following solution annealing, the C, Nb and Ti segmentation between the the interdendritc region was eliminated, and the Cr was redistributed; resulting in a homogeneous microstructure. Even after sensitization, the corrosion resistance was not significantly changed. After GTAW over-welding and sensitization heat treatment, Cr-rich carbides precipitated along the grain boundaries. The DL-EPR test results showed that the anodic peaks were reactivated; confirming the formation of sensitized structures. The corrosion mechanism consisted of grain boundary corrosion, interdendritic corrosion, and pitting corrosion. Following LSM treatment, the Cr-rich carbides were completely re-dissolved back into the substrate. Moreover, a re-melted zone was formed with equiaxed and fine columnar dendrites and a homogeneous C, Nb, Ti and Cr distribution. The DL-EPR test results showed no reactivation of the anode peaks. Thus, it was confirmed that LSM can effectively eliminate sensitized structure and enhance the repair corrosion resistance. The size of the repair range increased with an increasing laser energy density. An energy density of 34.2 J/mm2 was sufficient to completely dissolve the surface-rich Nb, Ti and Cr-rich precipitates and produce a high proportion of low-angle (<15°) low-energy grain boundaries, thereby inhibiting the segregation of solute and the precipitation of precipitates along the grain boundaries. An energy density of 34.2 J/mm2 was thus found to be the ideal LSM energy density for repairing and improving the corrosion resistance of Alloy 82.

    摘要 Ⅰ Extended Abstract Ⅱ 誌謝 Ⅶ 總目錄 .Ⅷ 表目錄 Ⅹ 圖目錄 XI 符號與縮寫表 .XIV 第一章前言 1 1.1前言 1 1.2文獻回顧 3 1.3研究動機與目的 7 第二章相關理論背景 11 2.1覆銲技術應用 11 2.2銲接材料性質 15 2.2.1失延裂紋敏感性 15 2.2.2敏化組織與沿晶界腐蝕 21 2.3銲道凝固組織理論 25 2.4雷射表面重熔技術應用 29 2.5雙環動電位再活化法 35 第三章實驗方法與步驟 40 3.1實驗流程 40 3.2試片準備與製作 42 3.3金相組織觀察 44 3.4 TEM微觀組織及化學成分分析 46 3.5電化學試驗法 46 3.5.1實驗裝置及溶液組成 46 3.5.2DL-EPR測試 47 3.5.3定電位測試 47 第四章結果與討論 49 4.1 GTAW覆銲與熱處理之影響 49 4.1.1 GTAW覆銲組織 49 4.1.2熱處理對GTAW覆銲組織影響 54 4.1.3 GTAW覆銲組織晶向與晶界特性 59 4.1.4熱處理對GTAW覆銲組織元素分布影響 64 4.1.5 GTAW覆銲析出物特性 72 4.1.6 GTAW覆銲腐蝕特性 79 4.1.7熱處理對GTAW覆銲腐蝕特性之影響 82 4.1.8腐蝕特性綜合討論 88 4.2 LSM走速對修復敏化組織影響 96 4.2.1金相組織影響 96 4.2.2腐蝕特性影響 99 4.2.3晶向與晶界特性影響 102 4.2.4元素分布影響 105 4.2.5析出物特性影響 109 4.2.6 LSM綜合討論 112 第五章結論 117 第六章建議 119 第七章參考文獻 120

    1. IEA,“Key World Energy Statistics 2017,”International Energy Agency, 2017.
    2. 李榮曜,“國際核能資訊,”台電核能月刊, Vol. 397(1), pp.5-21, 2016.
    3. 何偉,“核能發電的正當性與必要性,”台電核能月刊,Vol. 300(12), pp.22-39, 2007.
    4. R.A. Page,”Stress corrosion cracking of Alloy 600 and 690 and weld metals No. 82 and No.182 in high temperatue water,” EPRI-Report, No. NP-2617, 1982.
    5. G.J. Theus and R.H. Emanuelson,”Stress corrosion cracking of Alloy 600 and Alloy 690 in all volatile treated water at elevated temperature,” EPRI-Report, No. NP-3061, 1983.
    6. N. Taylor, C. Faidy and P. Gilles: Assessment of dissimilar weld integrity: Final Report of the NESC-III, EUR 22510 EN, 2006.
    7. H.P. Seifert and S. Ritter,“Stress corrosion cracking of low-alloy reactor pressure vessel steels under boiling water reactor conditions,” Journal of Nuclear Materials, Vol. 372, pp.114-131, 2008.
    8. R.A. Page and A. McMinn,“Stress corrosion cracking resistance of Alloys 600 and 690 and compatible weld metals in BWRs,” EPRI-Report, NP-1566-1, 1988.
    9. H. Nagano, K. Yamanaka, K. Kobayashi and M. Inoue,“Development and manufacturing system of Alloy 690 tubing for PWR steam generators,” The Sumitomo Search, No.40, pp.57-70, 1989.
    10. 鄭勝隆,“銲料合金元素之添加對鎳基690 與304L不銹鋼之銲接特性研究,” 碩士論文, 機械工程系, 國立成功大學, 1998.
    11. 葉東昌,“鎳基 690 合金銲件之特性與組織改善研究,” 碩士論文, 機械工程系, 國立成功大學, 1999.
    12. 郭聰源,“鎳基690 合金銲接特性研究,” 博士論文, 機械工程系, 國立成功大學, 1999.
    13. 鄭勝隆,“鎳基690 合金與SUS 304L不銹鋼異種金屬銲接特性與微結構研究,” 博士論文, 機械工程系, 國立成功大學, 2003.
    14. P.C. Riccardella, D.R. Pitcairn, A.J. Giannuzzi and T.L. Gerber,“Weld overlay repairs from conception to long-term qualification,” International Journal of Pressure Vessels and Piping, Vol. 34, pp. 59-82, 1988.
    15. T.K. Song, H.R. Bae, Y.J. Kim and K.S. Lee,“Numerical investigation on welding residual stresses in a PWR pressurizer safety/relief nozzle,” Fatigue and Fracture of Engineering Materials and Structures, Vol. 33, pp. 689-702, 2010.
    16. M.G. Collins and J.C.Lippold,“An investigation of ductility-dip cracking in nickel-based filler materials-Part I,” Welding Research, pp. 288-295, 2003.
    17. A.J. Ramirez and J.C.Lippold,“New insight into the Mechanism of ductility-dip cracking in Ni-base weld metals,” Hot Cracking Phenomena in Welds, Springer, Berlin/Heidelberg , pp.19-41, 2005.
    18. A.J. Ramirezand J.C. Lippold,“High temperature behavior of Ni-base weld metal: Part I. Ductility and microstructural characterization,” Materials Science and Engineering, Vol. A 380, Issues 1-2, pp. 259-271, 2004.
    19. A.J. Ramirez and J.C. Lippold,“High temperature behavior of Ni-base weld metal: Part II. Insight into the mechanism for ductility-dip cracking,” Materials Science and Engineering, Vol. A 380, Issues 1-2,pp. 245-258, 2004.
    20. U.K. Mudali, R.K. Dayal, J.B. Gnanamoorthy, S.M. Kanetkar and S.B. Ogale,“Localized corrosion studies on laser surface melted type 316 austenitic stainless steel,” Materials Transactions, JIM, Vol.32 (9), pp. 845-853, 1991.
    21. S. Yang, Z. Wang, H. Kokawa and Y.S. Sato,“Reassessment of the effects of laser surface melting on IGC of SUS 304,” Materials Science and Engineering A, Vol. 474 (1-2), pp. 112-119, 2008.
    22. 曾秉鈞,“雷射表面重熔參數對SUS304敏化不銹鋼去敏化之影響,” 碩士論文, 機械工程系, 國立成功大學, 2009.
    23. 洪聖凱,“不銹鋼銲件沿晶應力腐蝕劣化之雷射表面重熔修補技術研究,” 碩士論文, 機械工程系, 國立成功大學, 2010.
    24. 王昌隆,“SUS 304不銹鋼銲接衰化區及雷射表面重熔技術研究,” 碩士論文, 機械工程系, 國立成功大學, 2011.
    25. Y.S. Lim, J.H. Suh, I.H. Kuk and J.S. Kim,“Microscopic investigation of sensitized Ni-base Alloy 600 after laser surface melting,” Metallurgical and Materials Transactions A, Vol. 28A (5), PP. 1223-1231, 1997.
    26. J.H. Suh, J.K. Shin, S.J. Kang, Y.S. Lim, I.H. Kuk and J.S. Kim, “Investigation of IGSCC behavior of sensitized and laser-surface-melted Alloy 600,” Materials Science and Engineering A, Vol. 254 (1-2), pp. 67-75, 1998.
    27. J.K. Shin, J.H. Suh, J.S. Kim and S.J.L. Kang,“Effect of laser surface modification on the corrosion resistance of Alloy 600,” Surface and Coatings Technology, Vol.107 (2-3), pp. 94-100, 1998.
    28. Y.S. Lim, J.S. Kim and H.S. Kwon,“Effects of sensitization treatment on the evolution of Cr carbides in rapidly solidified Ni-base Alloy 600 by a CO2 laser beam,” Materials Science and Engineering A,Vol.279, pp.192-200, 2000.
    29. Y.S. Lim, J.S. Kim and H.S. Kwon,”Particle formation in the rapidly solidified zone of Alloy 600 surface melted by a CO2 laser beam,” Metallurgical and Materials Transactions A, Vol.32A (5), pp. 1248-1251, 2001.
    30. Y.S.Lim, H.P. Kim, J.H. Han, J.S. Kim, and H.S. Kwon,“Influence of laser surface melting on the susceptibility to intergranular corrosion of sensitized Alloy 600,” Corrosion Science, Vol.43 (7), pp.1321-1335, 2001.
    31. G. Bao, S. Iguro, M. Inkyo, K. Shinozaki, Y. Mahara and H. Watanabe, “Repair of stress corrosion cracking in overlaying of Inconel 182 by laser surface melting,” Welding in the World, Vol.49, pp. 37-44, 2005.
    32. G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, M. Yamamoto, Y. Mahara and H. Watanabe,“Stress corrosion cracking sealing in overlaying of Inconel 182 by laser surface melting,”Journal of Materials Processing Technology, Vol.173 (3), pp. 330-336, 2006.
    33. G. Bao, M. Yamamoto and K. Shinozaki,“Precipitation and Cr depletion profiles of Inconel 182 during heat treatments and laser surface melting,” Journal of Materials Processing Technology, Vol.209 (1), pp. 416-425, 2009.
    34. 陳冠聿,“雷射表面處理修補衰化Alloy 82之效果研究,” 碩士論文, 機械工程系, 國立成功大學, 2011.
    35. 許家旗,“雷射表面重熔法修補Alloy 82衰化之效果研究,” 碩士論文, 機械工程系, 國立成功大學, 2012.
    36. S.E. Cumblidge, G.J. Schuster, R.V. Harris, S.L. Crawford, R.J. Seffens, and M.B. Toloczko,“NDE and DE of PWSCC found in the J-groove weld of a removed-from-service control rod drive mechanism,” the 6th International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components. Budapest, Hungary, 2007.
    37. H. Xu, S. Fyfitch and J.W. Hyres,“Laboratory investigation of the stainless steel cladding on the Davis-Besse reactor vessel head,” the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System, pp. 821-831, 2005.
    38. I. Hamada and K. Yamauchi,“Intergranular corrosion resistance of Ni-Cr-Fe Alloy 82 weld metals overlaid on a low-alloy steel with wide-strip electrodes,” Corrosion, Vol. 59 (2), pp. 181-188, 2003.
    39. M. Sennour, E. Chaumun, J. Crépin, C. Duhamel, F. Gaslain, C. Guerre and I. de Curières,“TEM investigations on the effect of chromium content and of stress relief treatment on precipitation in Alloy 82,” Journal of Nuclear Materials, Vol. 442, pp. 262-269, 2013.
    40. B.F. Brown,“Theory of stress corrosion cracking in alloy,” NATO, Brussels, pp.186-203, 1971.
    41. R.H. Jones,“Stress-corrosion cracking,” ASM International, Ohio, pp. 135-190, 1992.
    42. V.N. Shah, A.G. Ware and A.M. Porter,“Assessment of pressurized water reactor controlrod drive mechanism nozzle cracking,” UREG/CR-6245, October, 1994.
    43. D.L. Harrod, R.E. Gold and R.J. Jacko,“Alloy optimization for PWR steam generator heat-transfer tubing,” The Journal of The Minerals, Metals and Materials Society, Vol. 53(7), pp.14-17, 2001.
    44. Information Notice 2001-05,“Through-wall circumferential cracking of reactor pressure vessel head control rod drive mechanism penetration nozzles at Oconee Nuclear Station, Unit 3,”April30, 2001.
    45. Information Notice 2002-13,“Possible indicators of ongoing reactor pressure vessel head degradation,”April 4, 2002.
    46. W. Bamford and J. Hall,“A review of Alloy 600 cracking in operating nuclear plants,”Historical Experience and Future Trends,” the 11th International Conference On Environmental Degradation of Materials in Nuclear Systems, Stevenson, WA, pp. 1071-1079, 2003.
    47. W. Bamford and J. Hall,“Cracking of Alloy 600 nozzle and welds in PWRs: Review of cracking events and repair service experience,” the 12th International Conference On Environmental Degradation of Materials in Nuclear Power System-Water Reactors, pp. 959-965, 2005.
    48. G. Frederick and A. Mcilree,“Materials Reliability Program: Selection of materials and fabrication of weldments for investigation of PWSCC susceptibility in the Alloy 600 and 690 weld heat affected zones (MRP-161),”EPRI, Palo Alto, California, USA, 1011805, 2006.
    49. C.K. Ahluwalia,“Materials Reliability Program: Review of stress corrosion cracking of Alloys 182 and 82 in PWR primary water service (MRP-220),” EPRI, Palo Alto, California, USA, 1015427, 2007.
    50. H. Xu, S. Fyfitch and J.W. Hyres,“Laboratory investigation of PWSCC of CRDM nozzle 3 and its J-groove weld on the Davis-Besse reactor vessel head,” the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System, PP. 833-842, 2005.
    51. S. L. Mccrackenand R.E. Smith: Laser surface modification of alloys for corrosion and erosion resistance, Woodhead Publishing Limited, pp. 41-78, 2012.
    52. R. Rishel, H. Lenz, G.Turley and B. Newton,“NDT with the structural weld overlay program recent field experience and lessons learned,” the International Conference Nuclear Energy for New Europe 2007, Portorož, Slovenia, pp.514.1-514.8, September 10-13, 2007.
    53. Y.L. Tsai, L.H. Wang, T.W. Fan, S. Ranganath, C.K. Wang and C.P. Chou,“Welding overlay analysis of dissimilar metal weld cracking of feed water nozzle,” International Journal of Pressure Vessels and Piping, Vol. 87 (1), pp. 26-32, 2010.
    54. C.T. Kwok, H.C. Man and F.T. Cheng,“Cavitation erosion and pitting corrosion of laser surface melted stainless steels,” Surface and Coatings Technology, Vol. 99 (3), pp. 295-304, 1998.
    55. N. Parvathavarthini, R.V. Subbarao, R.K. Dayal, H. S. Khatak and Sanjay Kumar,“Elimination of intergranular corrosion susceptibility of cold worked and sensitized AISI 316 SS by laser surface melting,” Journal of Materials Engineering and Performance, Vol. 10 (1), pp.5-13, 2001.
    56. O.V. Akgum, M. Urgen and A.F. Cakir,“The effect of heat treatment on corrosion behavior of laser surface melted 304L stainless steel,” Materials Science and Engineering A, Vol.203(1), pp.324-331, 1995.
    57. B.P. Miglinand and G.J. Theus,“Stress corrosion cracking of Alloy 600 and 690 inall-volatile-treated water at elevated temperatures,” EPRI-Report, NP-5761M, 1988.
    58. K. Stiller, J.O. Nilsson and K. Norring,“Structure, chemistry, and stress corrosion cracking of grain boundaries in Alloys 600 and 690,” Metallurgical and Materials Transactions A, Vol.27A, pp.327-341, 1996.
    59. G.S. Was and K. Lian,“Role of carbides in stress corrosion cracking resistance of Alloy 600 and controlled-purity Ni-16% Cr-9% Fe in primary water at 360℃,” Corrosion, Vol. 54(9), pp.675-688, 1998.
    60. B.W. Brisson, R.G. Ballinger and A.R. Mcllree,“Intergranular stress corrosion cracking initiation and growth in mill-annealed Alloy 600 tubing in high-temperature caustic,” Corrosion,Vol.54 (7), pp.504-514, 1998.
    61. R. Rios, T. MagNin, D. Noel and O. de Bouvier,“Critical analysis of Alloy 600 stress corrosion cracking mechanisms in primary water,” Metallurgical and Materials Transactions A, Vol.26A, pp. 925-939, 1995.
    62. J.K.Sung,“Effect of heat treatment on caustic stress corrosion cracking behavior of Alloy 600,” Corrosion, Vol.55 (12), pp.1144-1154, 1999.
    63. G.P. Airey, A.R. Vaia, N. Pessall and R.G. Aspden,“Detecting grain boundary chromium depletion in Inconel 600,” Journal of Metals, Vol. 33 (11), pp. 28-35, 1981.
    64. C.L. Briantand E.L. Hall,“Intergranular corrosion of high chromium nickel-base alloys,” Corrosion, Vol. 43(7), pp. 437-440, 1987.
    65. C.L. Briant and E.L. Hall,“The microstructural causes of intergranular corrosion of Alloys 82 and 182,” Corrosion, Vol. 43 (9),pp. 539-548, 1987.
    66. M.K. Ahn, H.S. Kwon and J.H. Lee,“Predicting susceptibility of Alloy 600 to intergranular stress-corrosion cracking using a modified electrochemical potentiokinetic reactivation test,” Corrosion, Vol. 51 (6), pp. 441-449, 1995.
    67. T.F. Wu, T.P. Cheng and W.T. Tsai,“The electrochemical potentiokinetic reactivation behavior of Alloy 600,” Materials Chemistry and Physics, Vol. 70 (2), pp. 208-216, 2001.
    68. T.F. Wu, T.P. Cheng and W.T. Tsai,“Effect of electrolyte composition on the electrochemical potentiokinetic reactivation behavior of Alloy 600,” Journal of Nuclear Materials, Vol. 295 (2-3),pp. 233-243, 2001.
    69. V. Kain and Y. Watanabe,“Development of a single loop EPR test method and its relation to grain boundary microchemistry for Alloy 600,” Journal of Nuclear Materials, Vol.302 (1), pp. 49-59, 2002.
    70. W. Wu and C.H. Tsai,“Hot cracking susceptibility of fillers 52 and 82 in Alloy 690 welding,” Metallurgical and Materials Transactions A, Vol. 30 (2), PP. 417-426, 1999.
    71. S.L. Mccracken and R.E.Smith,“Behavior and hot cracking susceptibility of filler metal 52M (ERNiCrFe-7A) overlays oncast austenitic stainless steel base materials,” Hot Cracking Phenomena in Welds III, Springer Berlin Heidelberg, pp. 333–352, 2011.
    72. 黃朝鈿,“Inconel 52M 被覆於SUS316L 之特性研究,” 碩士論文, 材料科技研究所, 國立臺灣科技大學, 2009.
    73. 許几權,“緩衝層對SUS 316L不銹鋼被覆鎳基超合金52M機械性質研究,” 碩士論文, 材料科技研究所, 國立臺灣科技大學, 2009.
    74. 林岡正,“SUS 316L 被覆鎳基合金Inconel 52M及Inconel 82之拉伸與腐蝕性研究,” 碩士論文, 機械工程系, 國立臺灣科技大學, 2010.
    75. 張育賢,“冷卻條件對SUS 316L被覆Inconel 52M之機械與腐蝕性質影響,” 碩士論文, 機械工程系, 國立臺灣科技大學, 2010.
    76. 鍾偉志,“A508-Alloy 52與316L-Alloy 52異質金屬銲件之高溫水環境應力腐蝕特性研究,” 博士論文, 材料科學與工程系, 國立台灣大學, 2011.
    77. H.A. Chu, M.C. Young, H.C. Chu, L.W. Tsay and C. Chen,“Hot cracking susceptibility of Alloy 52M weld overlays onto CF8 stainless steel,” Journal of Nuclear Materials, Vol.433 (1-3) , pp. 419-423, 2013.
    78. J.N. DuPont, C.V. Robino and A.R. Marder,“Solidification and weldability of Nb bearing superalloys,” Welding Joumral, Vol. 77(10), pp. 417s-431s, 1998.
    79. R.M. Poths, R.L. Higginson and E.J. Palmiere,“Complex precipitation behaviour in a microalloyed plate steel,” Scripta Materialia, Vol. 44 (1), pp. 147-151, 2001.
    80. J.C. Lippold and N.E. Nissley,“Ductility-dip cracking in high chromium, Ni-base filler metals,” Hot Cracking Phenomena in Welds II, Springer, pp. 409-426, 2008.
    81. D. A. Jones: Principles and prevention of corrosion, Maxwell Macmillan International Publishing Company, New York, p.303, 1992.
    82. ASTM G28-02,“Standard test methods for detecting susceptibility to intergranular corrosion in wrought, nickel-rich, chromium-bearing alloys,”2015.
    83. H.T. Lee and J.L. Wu,“Intergranular corrosion resistance of nickel-based Alloy 690 weldments,” Corrosion Science, Vol. 52 (5), pp. 1545-1550, 2010.
    84. W.T. Tsai, C.L. Yu and J.I. Lee,“Effect of heat treatment on the sensitization of Alloy 182 weld,” Scripta Materialia, Vol. 53 (5), pp. 505-509, 2005.
    85. Q.J. Peng, H. Yamauchi and T. Shoji, “Investigation of dendrite boundary microchemistry in Alloy 182 using Auger electron spectroscopy analysis,” Metallurgical and Materials Transactions A, Vol. 34 (9), pp. 1891-1899, 2003.
    86. H. Yamauchi, Q.J. Peng and T. Shoji,“Measurement of compositional profile of ID facets by FEG-AES and its relevance to IDSCC of Alloy 182 in a simulated BWR environment,” Key Engineering Materials, Vol. 261-263, pp. 1011-1016, 2004.
    87. H.T. Lee and T.Y. Kuo,“Effects of niobium on microstructure, mechanical properties, and corrosion behaviour in weldments of Alloy 690,” Science and Technology of Welding and Joining, Vol. 4 (4), pp. 246-256, 1999.
    88. F.F. Noecker II and J.N. DuPont,“Metallurgical investigation into ductility-dip cracking in Ni-based alloys: Part I,” Welding Journal, Vol.88 (1), pp. 7S-20S , 2009. 
    89. J.N. DuPont, J.C. Lippold and S.D. Kiser: Welding metallurgy and weldability of nickel-base alloys, John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 57-300, 2009.
    90. K.Sindo: Welding metallurgy, John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 178-215, 2003.
    91. J.C. Ion: Laser processing of engineering materials, Elsevier, Amsterdam, 2005.
    92. J.C. Charbonnier and T. Jossic,“An electrochemical study of intergranular corrosion related to the chromium depletion mechanism in the case of 18-10 austenitic stainless steels,” Corrosion Science, Vol. 23 (11), pp. 1191-1206, 1983.
    93. W.L. Clarke, V. M. Romero and J. C. Danko,“Detecting of sensitization in stainless steels using electrochemical techniques,” Corrosion, Paper No. 180, San Francisco, Calif., 1977.
    94. W.L. Clarke, R.L. Cowan and W.L. Walker,“Intergranular corrosion of stainless alloys,” ASTM STP 656, p.99, 1978.
    95. ASTM G108-94,“Standard test method for electrochemical reactivation (EPR) for detecting sensitization of AISI type 304 and 304L stainless steels,” 2015.
    96. ASTM E112-13,“Standard test methods for determining average grain size,” 2013.
    97. A. Mignone, A. Borello and A. La Barbera,“The electrochemical potentiokinetic reactivation method-an analysis of different treatments of experimental data,” Corrosion, Vol. 38 (7), pp. 390-402, 1982.
    98. F. Duffaut, J.P. Pouzet and P. Lacombe,“Potentiostatic study of structural modifications caused in a Ni-Cr-Fe alloy by heat treatment at 650°C,” Corrosion Science, Vol. 6 (2), pp. 83-84, 1966.
    99. V. Číhal,“A potentiokinetic reactivation method for predicting the ICC and IGSCC sensitivity of stainless steels and alloys,” Corrosion Science, Vol. 20 (6), pp. 737-744, 1980.
    100. JIS G 0580,“Method of electrochemical potentiokinetic reactivation ratio measurement for stainless steels,”2003.
    101. T. Kubo, M. Itow, N. Tanaka and T. Saito,“SCC retardation and propagation behavior in dissimilar weldment of Alloy 182 and low alloy steel,” the 14th International Conference on Environmental Degradation of Materials in Nuclear Power System- Water Reactors, pp.935-944, 2009.
    102. Z. Fang, L. Zhang, Y.S. Wu, J.Q. Li, D.B. Sun, G. Jiang and Z.M. Cui,“Thioacetamide as an activator for the potentiodynamic reactivation method in evaluating susceptibility of type 304L stainless steel to intergranular corrosion,” Corrosion, Vol. 51 (2), pp. 124-130, 1993.
    103. 游季陸,“鎳基182合金銲道敏化現象之研究,” 碩士論文, 材料科學及工程系, 國立成功大學, 2003.
    104. ASTM G5-14,“Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements,” 2014.
    105. J.C. Lippold, W.A.T. Clark and M. Tumuluru,“ An investigation of weld metal interfaces,” The Metal Science of Joining, published by The Metals, Minerals and Materials Society,Warrendale, PA, pp. 141-146, 1992.
    106. 陳泓昇,“鎳基銲材52鈮含量對銲道影響,” 碩士論文, 機械工程系, 國立成功大學, 2013.
    107. J.J. Kai, C.H. Tsai, T.A. Huang and M.N. Liu,“The effects of heat treatment on the sensitization and SCC behavior of Inconel 600 alloy,” Metallurgical Transactions A,Vol. 20 (6), pp.1077-1088, 1989
    108. P. Scott, M. Foucault, J. Hickling and A. Mcilree,“Examination of stress corrosion cracks in Alloy 182 weld metal after exposure to PWR primary water,” the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System- Water Reactors, Edited by T.R. Allen, P.J. King and L. Nelson TMS (The Minerals, Metals and Materials Society), pp.497-507, 2005.
    109. B. Alexandreanu, O. K. Chopra, and W. J. Shack, “The effect of grain orientation on the cracking behavior of Alloy 182 in PWR environment,” the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors, Edited by T.R. Allen, P.J. King, and L. Nelson TMS (The Minerals, Metals and Materials Society), pp.14-18, 2005.
    110. Q. Peng, T. Shoji, H. Yamauchi and Y. Takeda,“Intergranular environmentally assisted cracking of Alloy 182 weld metal in simulated normal water chemistry of boiling water reactor,” Corrosion Science, Vol. 49 (6), pp. 2767-2780, 2007.
    111. Y.S. Lim, H.P. Kim, H.D. Cho and H.H. Lee,“Microscopic examination of an Alloy 600/182 weld,” Materials Characterization, Vol. 60 (12), pp. 1496-1506, 2009.
    112. M.J. Perricone and J.N. DuPont,“Effect of composition on the solidification behavior of several Ni-Cr-Mo and Fe-Ni-Cr-Mo alloys,” Metallurgical and Materials Transactions A ,Vol.37A, pp.1267-1280, 2006.
    113. 蔡文達,“ 鎳基182 合金銲道之微觀組織與高溫腐蝕破裂性質研究(2/2),” 國科會研究報告, 材料科學及工程學系, 國立成功大學, 2004.
    114. S. L. Jeng, H. T. Lee, W. P. Rehbach, T. Y. Kuo, T. E. Weirich and J. P. Mayer,“ Effects of Nb on the microstructure and corrosive property in the Alloy 690 and SUS 304L weldment,”Materials Science and Engineering A, Vol. 397 (1-2), pp.229-238, 2005.
    115. 吳宗峰,“鎳基600合金之敏化及電化學再活化特性研究,” 博士論文, 材料科學及工程系, 國立成功大學, 2001.
    116. P. Lin, G. Palumbo, U. Erb and K.T. Aust,“Influence of grain boundary character distribution on sensitization and intergranular corrosion of Alloy 600,” Scripta Metallurgica et Materialia, Vol. 33 (9), pp. 1387-1392, 1995.
    117. Z. Xu, D.Li, Y. Li and S. Lu,“Effect of Nb on the corrosion resistance of Ni-Cr-Fe-based weld metals,”Corrosion, Vol. 73(6), pp. 734-741, 2017.

    無法下載圖示 校內:2023-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE