| 研究生: |
李佳和 Lee, Chia-Ho |
|---|---|
| 論文名稱: |
錫鉛凸塊三維高度的量測 3D Lead Solder Bump Height Measurement |
| 指導教授: |
黃明哲
Huang, Ming - Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 電子構裝 、覆晶技術 、錫鉛凸塊量測 、共焦顯微鏡 、打線技術 、凸塊 |
| 外文關鍵詞: | Wire Bonding Technology, Flip Chip Technology, Confocal Microscope, CCD, IC package process, Bumping, Lead solder bump height measurement |
| 相關次數: | 點閱:106 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為滿足電子產品輕薄短小的要求,覆晶技術逐漸取代打線技術成為目前電子構裝的明日之星,其中凸塊外觀的檢測便是擔任凸塊製程品質的把關者。
現今產業界對錫鉛凸塊高度三維的量測以雷射量測為居多,由於雷射量測有其技術上的限制及目前面臨的諸多問題,本研究試著採用共焦顯微鏡搭配CCD連續影像的擷取,進而由數學運算式來求得凸塊的高度近似值。
最後實驗的結果與理論吻合且得到非常接近實際凸塊的高度值,此結果滿足業界對凸塊精度檢驗且快速檢驗的要求。另外透過各種不同條件的比較,了解到硬體上的差異,影像取樣區域的大小及取樣的樣品數對實驗結果的影嚮。
To satisfy the trend of the electronic products size reduced and weight thinned, The “Flip Chip Technology” has instead of the ”Wire Bonding Technology” progressively and becomes the primary selection for IC package process. Bump exterior inspection process is the important monitor for the quality control of bump manufactured process.
Currently, the Laser Technology is the most popular choice for 3D Lead solder bump height measurement on the production. But due to the existed laser technology limitation and encountered issues, the laser measurement method is not fully suitable for further application requirement on bump development roadmap. So, here we try to apply the “Confocal Microscope” technology and collocate with CCD for the continued image captured then through mathematical calculation to get the closed bump height.
The final experiment results conform to the “Confocal Microscope Method”, and achieve the equivalent result with actual bump height. In additional, the result is not only satisfied the measurement accurate specification but the high throughput required expectation. The last, through the varied conditions comparison, we understand the impacts come from equipment variation, image pixel area selection and sample size selection.
1. Marvin Minsky, "Memoir on Inventing the Confocal Scanning Microscope", Published in Scanning, vol.10 pp128-138, 1988.
2. T. Wilson and C. J. R. Sheppard, “Theory and Practice of Scanning Optical Microscope “, Academic Press, London, 1984.
3. R.H.Webb, “Confocal Optical Microscopy”, Reports on Progress in Physics, 59, pp.427 – 451, 1996
4. 黃茂闊,『雙光子共焦顯微鏡和顯微光譜之應用:氮化鎵銦發光二極體的光致電流影像和顯微光譜』,中山大學物理學系碩士論文,2000.
5. Jia-Min,Shieh, Yi-Fan, LAI, Young-Chang Lin, and Jr-Yau Fang, “Photoluminescence: Principles, Structure, and Applications”, 奈米通訊。第十二卷第二期,頁數28-39, 2005
6. S.K. Nayar and Y. Nakagawa, "Shape from Focus”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.16, No.8, pp.824-831, 1994.
7. Grossmann, P., “Depth from Focus”, Pattern Recognition, Letters.5, pp.63-69, 1987.
8. Choi, TS., Asif, M., and Yun, J., “Three-Dimentional Shape Recovery from Focused Image Surface”, Acoustics, Speech, and Signal Processing, 1999. Proceedings, 1999 International Conference on, Vol.3 pp. 910-914, 1999.
9. 潘嘉偉, 「變焦測深技術的應用」,國立中山大學機械工程學系碩士論文,1999.
10. 范欽雄、簡榮富,「電控CCD攝影機之自動對焦與自動光圈」,第八屆全國自動化科技研討會,桃園,第一冊,第268-278頁,1999
11. Kessler, W., and Fisher, J., “Analytical Model of Autofocus System with CCD camera,” proceedings of SPIE, Vol. 3965, pp. 369-380.
12. Ng, K. C., Poo, A.N., and Ang, M.H., “Partical Issues in Pixel-Based Autofocusing for Machine Vision”, Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Korea, Vol. 31, pp. 2791-2796.
13. Vaughnn, David; Watkins, Cory and Anderson, Dick ,“Rapid Confocal Sensor : a noncontact profilometer for fast 3D submicron inspection and metrology of large formats”, Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries II, Proc. SPIE Vol. 4449, pp. 169-177, 2001.
14. M. Born and E. Wolf, “Principal of Optics”, Cambridge University Press, 2003.