| 研究生: |
張坤詩 Chang, Kun-Shih |
|---|---|
| 論文名稱: |
鋼管超高性能混凝土受軸壓之有限元素分析 Finite Element Analysis of UHPC Filled Steel Tube Subjected to Axial Compressive Force |
| 指導教授: |
胡宣德
Hu, Hsuan-Teh |
| 共同指導教授: |
何陽多
Yanuar, Haryanto |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 214 |
| 中文關鍵詞: | 鋼管混凝土 、超高性能混凝土 、非線性分析 、軸向載重 、圍束 、參數 |
| 外文關鍵詞: | Concrete-filled steel tube, ultrahigh-performance concrete, Nonlinear analysis, Axial loads, Confinement, Parameters |
| 相關次數: | 點閱:100 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋼管混凝土(Concrete Filled Tube,CFT)柱可提供高強度、韌性及耐震能力,除了提升相關力學性能外,可避免模板更換使用,進而減少大量的施工時間。然而隨著經濟社會的發展,對工程結構性能的要求不斷提高,鋼管混凝土需要引進越來越高性能的混凝土材料。超高性能混凝土(Ultra-High Performance Concrete,UHPC)憑藉著優於傳統混凝土的力學特性與耐久性能而備受關注。然而其固有的脆性讓實際應用遭受阻礙,鋼管填充超高性能混凝土(UHPC Filled Steel Tube,UHPCFST)柱能有效圍束限制UHPC脆性破壞,形成高強度、延展性的高性能構件。本研究的目的是採用數值建模軟體Abaqus來進行3D 非線性有限元素分析,對承受單軸壓力荷載的UHPCFST柱進行數值模擬,為驗證有限元素模型,將數值分析結果與實驗數據進行比較,探討UHPCFST柱模型在不同圍壓和柱的幾何特性下的影響。
Concrete-filled tube (CFT) columns are renowned for their excellent seismic resistance, providing high strength, high ductility, and substantial energy absorption capacity. Besides enhancing structural properties, CFT columns expedite construction by eliminating the need for permanent formwork. The evolving demands for high-performance engineering structures, driven by economic and societal advancements, necessitate the incorporation of ultrahigh-performance concrete (UHPC) into concrete-filled steel tube structures. Ultrahigh-- performance concrete has garnered significant attention for its exceptional mechanical strength and long-term durability compared to conventional concrete. However, the inherent brittleness of ultrahigh-performance concrete poses challenges for practical applications. Ultrahigh-performance concrete-filled steel tube (UHPCFST) columns mitigate this brittleness, preventing brittle failure in non-reinforced columns and forming high-performance members with improved strength and ductility. The aim of this investigation is to employ the nonlinear finite element program ABAQUS to perform numerical simulations of UHPCFST columns subjected to axial compressive loads. To achieve this goal, proper material constitutive models for steel tube, and ultrahigh-performance concrete are proposed. Then the proposed material constitutive models are verified against experimental data. Finally, the influence of the concrete confining pressure and the geometric properties of the columns on the uniaxial behavior of UHPCFST columns are studied and discussed.
[1]Hu, H.-T., Huang, C. S., Wu, M.-H., & Wu, Y.-M. (2003). Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect. Journal of Structural Engineering, ASCE, 129(10), 1322-1330. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
[2]Hung, C.-C., El-Tawil, S., & Chao, S.-H. (2021). A review of developments and challenges for UHPC in structural engineering: Behavior, analysis, and design. Journal of Structural Engineering, 147(3), 03121001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003073
[3]Chen, S., Zhang, R., Jia, L.-J., Wang, J.-Y., & Gu, P. (2018). Structural behavior of UHPC filled steel tube columns under axial loading. Thin-Walled Structures, 130, 87-97.
[4]Wu, F., Xu, L., Zeng, Y., Yu, M., & Li, B. (2023). Behavior of CA-UHPC filled circular steel tube stub columns under axial compression. Journal of Constructional Steel Research, 211, 106087.
[5]Tang, H., Qin, J., Liu, Y., & Chen, J. (2023). Axial compression behaviour of circular and square UHPC-filled stainless steel tube columns. Journal of Constructional Steel Research, 211, 106081.
[6]Le, A., Ekkehard, Dr.-Ing., Lai, B., Thai, D.-K., & Chau, N. (2019). Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube. Engineering Structures, 187, 457-477. https://doi.org/10.1016/j.engstruct.2019.02.063
[7]An, L. H., & Fehling, E. (2017). Influence of steel fiber content and type on the uniaxial tensile and compressive behavior of UHPC. Construction and Building Materials, 153, 790-806.
[8]Graybeal, B. A. (2005). Characterization of the behavior of ultra-high performance concrete (Ph.D. dissertation). University of Maryland, USA.
[9]Liew, J. Y. R., & Xiong, D. X. (2012). Ultra-high strength concrete filled composite columns for multi-storey building construction. Advances in Structural Engineering, 15(9), 1487-1503.
[10] Shin, H. O., Soon, Y. S., Cook, W. D., & Michell, D. (2015). Effect of confinement on the axial load response of ultrahigh-strength concrete columns. Journal of Structural Engineering, ASCE, 41(6), 04014151-1–04014151-12.
[11] Fehling, E., Bunje, K., & Leutbecher, T. (2004). Design relevant properties of hardened ultra high performance concrete. In M. Schmidt, E. Fehling, & C. Geisenhanslüke (Eds.), Proceedings of the International Symposium on Ultra High Performance Concrete (pp. 327-338). Kassel, Germany: Kassel University Press.
[12] Zohrevand, P., & Mirmiran, A. (2011). Behavior of ultrahigh-performance concrete confined by fiber reinforced polymers. Journal of Materials in Civil Engineering, ASCE, 23(12), 1727-1734.
[13] An, L. H., & Fehling, E. (2017). A review and analysis of UHPC filled steel tube columns. Structural Engineering and Mechanics, 61(2), 417-430.
[14] An, L. H., & Fehling, E. (2017). Analysis of circular steel tube confined UHPC stub columns. Steel and Composite Structures, 23(6), 669-682.
[15] Tue, N. V., Schneider, H., Simsch, G., & Schmidt, D. (2004b). Bearing capacity of stub columns made of NSC, HSC and UHPC confined by a steel tube. In Proceedings of 1st International Symposium on Ultra High Performance Concrete (pp. 339-350). Kassel, Germany.
[16] Xiong, M. X., Xiong, D. X., & Liew, J. Y. (2017). Axial performance of short concrete filled steel tubes with high-and ultra-high-strength materials. Engineering Structures, 136, 494-510.
[17] Blais, P. Y., & Couture, M. (1999). Precast, prestressed pedestrian bridge: World’s first reactive powder concrete structure. PCI Journal, 44(5), 60-71.
[18] Yang, X., Zohrevand, P., & Mirmiran, A. (2015). Behavior of ultrahigh-performance concrete confined by steel. Journal of Materials in Civil Engineering, ASCE, 28(10), 04016113-1–04016113-8.
[19] Guler, S., Aydogan, M., & Copur, A. (2013). Axial capacity and ductility of circular UHPC-filled steel tube columns. Magazine of Concrete Research, 65(15), 898-905.
[20] ACI (American Concrete Institute). (2018). Ultra-high-performance concrete: An emerging technology report (ACI 239R). Detroit: ACI.
[21] Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and Concrete Research, 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2
[22] Rossi, P., Arca, A., Parant, E., & Fakhri, P. (2005). Bending and compressive behaviors of a new cement composite. Cement and Concrete Research, 35(1), 27-33. https://doi.org/10.1016/j.cemconres.2004.05.043
[23] Farhat, F. A., Nicolaides, D., Kanellopoulos, A., & Karihaloo, B. L. (2007). High performance fiber-reinforced cementitious composite (CARDIFRC)— Performance and application to retrofitting. Engineering Fracture Mechanics, 74(1-2), 151-167. https://doi.org/10.1016/j.engfracmech.2006.01.023
[24] Voo, Y. L., & Foster, S. J. (2010). Characteristics of ultra-high performance ‘ductile’ concrete and its impact on sustainable construction. IES Journal Part A: Civil and Structural Engineering, 3(3), 168-187.
[25] Wille, K., Kim, D. J., & Naaman, A. E. (2011). Strain hardening UHPFRC with low fiber contents. Materials and Structures, 44(3), 583-598. https://doi.org/10.1617/s11527-010-9650-4
[26] Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
[27] Aghdasi, P., Heid, A. E., & Chao, S. H. (2016). Developing ultra-high-performance fiber-reinforced concrete for large-scale structural applications. ACI Materials Journal, 113(5), 559-570. https://doi.org/10.14359/51689103
[28] Alkaysi, M., & El-Tawil, S. (2016). Effects of variations in the mix constituents of ultra high performance concrete (UHPC) on cost and performance. Materials and Structures, 49(10), 4185-4200. https://doi.org/10.1617/s11527-015-0780-6
[29] Hung, C. C., Chen, Y. T., & Yen, C. H. (2020). Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macro-fibers. Construction and Building Materials, 260, 119944. https://doi.org/10.1016/j.conbuildmat.2020.119944
[30] Naaman, A. E. (2018). Fiber reinforced cement and concrete composites. Sarasota, FL: Techno Press.
[31] Voo, Y. L., Foster, S. J., & Voo, C. C. (2015). Ultrahigh-performance concrete segmental bridge technology: Toward sustainable bridge construction. Journal of Bridge Engineering, 20(8), B5014001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000704
[32] Graybeal, B. A., Brühwiler, E., Kim, B. S., Toutlemonde, F., Voo, Y. L., & Zaghi, A. (2020). International perspective on UHPC in bridge engineering. Journal of Bridge Engineering, 25(11), 04020094. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001630
[33] Hwang, H. H., Yoo, D. M., Park, S. Y., & Kim, B. S. (2009). Optimized design of UHPC bridge deck slab for hybrid cable-stayed girder bridge. In Proceedings of the 13th REAAA Conference (pp. 4-19). Selangor, Malaysia: Road Engineering Association of Asia and Australasia.
[34] Shao, Y., Shao, X., Li, L., & Wu, J. (2017). Optimum combination of bridge and deck systems for superspan cablestayed bridges. Journal of Bridge Engineering, 23(1), 04017112. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001161
[35] Graybeal, B. A. (2015). Splice length of prestressing strands in field-cast UHPC connections. Materials and Structures, 48(6), 1831-1839. https://doi.org/10.1617/s11527-014-0277-8
[36] Tazarv, M., & Saiidi, M. S. (2015). UHPC-filled duct connections for accelerated bridge construction of RC columns in high seismic zones. Engineering Structures, 99, 413-422. https://doi.org/10.1016/j.engstruct.2015.05.018
[37] Wang, Z., Wang, J., Tang, Y., Gao, Y., & Zhang, J. (2019). Lateral behavior of precast segmental UHPC bridge columns based on the equivalent plastic-hinge model. Journal of Bridge Engineering, 24(3), 04018124. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001332
[38] Graybeal, B. A. (2008). Flexural behavior of an ultrahigh-performance concrete I-girder. Journal of Bridge Engineering, 13(6), 602-610. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(602)
[39] Ahlborn, T. T. M., Harris, D. K., Misson, D. L., & Peuse, E. J. (2011). Characterization of strength and durability of ultra-high-performance concrete under variable curing conditions. Transportation Research Record, 2251(1), 68-75. https://doi.org/10.3141/2251-07
[40] Alkaysi, M., El-Tawil, S., Liu, Z., & Hansen, W. (2016). Effects of silica powder and cement type on long term durability of ultra high performance concrete (UHPC). Cement and Concrete Composites, 66, 47-56. https://doi.org/10.1016/j.cemconcomp.2015.11.005
[41] Graybeal, B. A. (2006). Structural behavior of ultra-high performance concrete prestressed I-girders. Report No. FHWA-HRT-06-115. Washington, DC: Federal Highway Administration.
[42] Tadros, M. K., & Voo, Y. L. (2016). Taking ultra-high-performance concrete to new heights. ASPIRE, 10(3), 36-38.
[43] Tadros, M. K., Sevenker, A., & Berry, R. (2019). Ultra-high-performance concrete: A game changer. Structure Magazine, 65(3), 33-36.
[44] El-Tawil, S., Tai, Y.-S., Belcher, J. A., & Rogers, D. (2020). Open-recipe ultra-high performance concrete (UHPC): Busting the cost myth. Concrete International, 42(6), 33-38.
[45] Wang, X., Fan, F., & Lai, J. (2022). Strength behavior of circular concrete-filled steel tube stub columns under axial compression: A review. Construction and Building Materials, 322, 126416.
[46] Abed, F., Alhamaydeh, M., & Abdalla, S. (2013). Experimental and numerical investigations of the compressive behavior of concrete filled steel tubes (CFSTs). Journal of Constructional Steel Research, 80.
[47] Ayough, P., Sulong, N. H. R., & Ibrahim, Z. (2020). Analysis and review of concrete-filled double skin steel tubes under compression. Thin-Walled Structures, 148.
[48] Chang, X., Luo, X., Zhu, C., & Tang, C. (2014). Analysis of circular concrete-filled steel tube (CFT) support in high ground stress conditions. Tunnelling and Underground Space Technology, 43.
[49] Wang, X., Lai, J., He, S., Garnes, R. S., & Zhang, Y. (2020). Karst geology and mitigation measures for hazards during metro system construction in Wuhan, China. Natural Hazards, 103(3).
[50] Huang, W. P., Yuan, Q., Tan, Y. L., Wang, J., Liu, G. L., Qu, G. L., & Li, C. (2018). An innovative support technology employing a concrete-filled steel tubular structure for a 1000-m-deep roadway in a high in situ stress field. Tunnelling and Underground Space Technology, 73.
[51] Zhang, J. P., Liu, L. M., Cao, J. Z., Yan, X., & Zhang, F. T. (2018). Mechanism and application of concrete-filled steel tubular support in deep and high stress roadway. Construction and Building Materials, 186.
[52] Xie, K., Wang, H., Guo, X., & Zhou, J. (2021). Study on the safety of the concrete pouring process for the main truss arch structure in a long-span concrete-filled steel tube arch bridge. Mechanics of Advanced Materials and Structures, 28(7).
[53] Zheng, J. L., & Wang, J. J. (2018). Concrete-filled steel tube arch bridges in China. Engineering, 4(1).
[54] Xu, F., Chen, J., & Jin, W. L. (2014). Experimental investigation of thin-walled concrete-filled steel tube columns with reinforced lattice angle. Thin-Walled Structures, 84.
[55] Hassanein, M. F., Elchalakani, M., Karrech, A., Patel, V. I., & Yang, B. (2018). Behaviour of concrete-filled double-skin short columns under compression through finite element modelling: SHS outer and SHS inner tubes. Structures, 14.
[56] Liew, J. Y. R., & Xiong, M. (2016). Design of concrete filled tubular beam-columns with high strength steel and concrete. Structures, 8.
[57] Romero, M. L., Ibañez, C., Espinos, A., Portolés, J. M., & Hospitaler, A. (2017). Influence of ultra-high strength concrete on circular concrete-filled dual steel columns. Structures, 9.
[58] Han, L. H., Li, W., & Bjorhovde, R. (2014). Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. Journal of Constructional Steel Research, 100.
[59] Ekmekyapar, T. (2016). Experimental performance of concrete filled welded steel tube columns. Journal of Constructional Steel Research, 117.
[60] Wang, X. L., Lai, J. X., Qiu, J. L., Xu, W., Wang, L. X., & Luo, Y. B. (2020). Geohazards, reflection and challenges in mountain tunnel construction of China: a data collection from 2002 to 2018. Geomatics, Natural Hazards and Risk, 11(1).
[61] Roeder, C. W., Lehman, D. E., & Bishop, E. (2010). Strength and stiffness of circular concrete filled tubes. Journal of Structural Engineering, 136(12).
[62] Al-Eliwi, B. J. M., Ekmekyapar, T., Al-Samaraie, M. I. A., & Dogru, M. H. (2018). Behavior of reinforced lightweight aggregate concrete-filled circular steel tube columns under axial loading. Structures, 16.
[63] Liang, Q. Q. (2009). Strength and ductility of high strength concrete-filled steel tubular beam-columns. Journal of Constructional Steel Research, 65(3).
[64] Varma, A. H., Ricles, J. M., Sause, R., & Lu, L. W. (2002). Experimental behavior of high strength square concrete-filled steel tube beam-columns. Journal of Structural Engineering, 128(3).
[65] Liu, D. (2005). Tests on high-strength rectangular concrete-filled steel hollow section stub columns. Journal of Constructional Steel Research, 61(7).
[66] Wu, M.-H. (2000). Numerical analysis of concrete filled steel tubes subjected to axial force (Master's thesis). Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.
[67] Le, A., & Dr.-Ing, E. (2017). Assessment of stress-strain model for UHPC confined by steel tube stub columns. Structural Engineering and Mechanics, 63, 371-384. https://doi.org/10.12989/sem.2017.63.3.371
[68] Guler, S., Aydogan, M., & Copur, A. (2013). Axial capacity and ductility of circular UHPC-filled steel tube columns. Magazine of Concrete Research, 65(15), 898-905.
[69] Yan, P. Y., & Feng, J. W. (2008). Mechanical behavior of UHPC and UHPC filled steel tubular stub columns. In Proceedings of Second International Symposium on Ultra High Performance Concrete, Kassel, Germany.
[70] Liew, J. Y. R., & Xiong, M. X. (2015). Design Guide for Concrete Filled Tubular Members with High Strength Materials to Eurocode 4. Research Publishing, Blk 12 Lorong Bakar Batu, 349568 Singapore.
[71] Liew, J. Y. R., Xiong, M. X., & Xiong, D. X. (2014). Design of high strength concrete filled tubular columns for tall buildings. International Journal of High-Rise Buildings, 3(3), 215-221.
[72] Liew, J. Y. R., Xiong, M. X., & Xiong, D. X. (2016). Design of concrete filled tubular beam-columns with high strength steel and concrete. Structures, 8, 215-221.
[73] Liew, J. Y. R., & Xiong, D. X. (2010). Experimental investigation on tubular columns infilled with ultra-high strength concrete. In Tubular Structures XIII, The University of Hong Kong, 637-645.
[74] Liew, J. Y. R., & Xiong, D. X. (2012). Ultra-high strength concrete filled composite columns for multi-storey building construction. Advances in Structural Engineering, 15(9), 1487-1503.
[75] Tue, N. V., Schneider, H., Simsch, G., & Schmidt, D. (2004a). Bearing capacity of stub columns made of NSC, HSC and UHPC confined by a steel tube. In Proceedings of International Symposium on Ultra High Performance Concrete, Kassel, Germany, March.
[76] Schneider, H. (2006). Zum tragverhalten kurzer, umschnürter, kreisförmiger, druckglieder aus ungefasertem UHFB (Ph.D. dissertation). University of Leipzig, Leipzig, Germany.
[77] Wu, M.-H. (2023). Finite Element Analysis of RC T-Beam Strengthened in the Negative Moment Region by Ultra-High Performance Concrete Layer Subjected to Monotonic and Cyclic Loading (Master's thesis). Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan, R.O.C.
[78] Yun, X., & Gardner, L. (2017). Stress-strain curves for hot-rolled steels. Journal of Constructional Steel Research, 133(September), 36–46. https://doi.org/10.1016/j.jcsr.2017.01.024
[79] Gardner, L., & Yun, X. (2018). Description of stress-strain curves for cold-formed steels. Construction and Building Materials, 189, 527–538. https://doi.org/10.1016/j.conbuildmat.2018.08.195
[80] Pascu, R. (2008). Comportarea şi calculul elementelor din (p. 136).
[81] Simon, A. (2009). Les Nouvelles Recommandations AFGC sur les BFUP CHAPITRE I- Comportement et Caractéristiques Mécaniques des BFUP. In Proceedings of the International Workshop on Ultra High Performance Fibre Reinforced Concrete—Designing and Building with UHPFRC: State of the Art Development (Paper 6.1.2). AFGC/fib.
[82] Russell, H., & Graybeal, B. (2013). Ultra-High Performance Concrete: A State-of-the-Art Report for the Bridge Community.
[83] Zhang, Z., Shao, X., Li, W., Zhu, P., & Chen, H. (2015). Axial tensile behavior test of ultrahigh performance concrete. China Journal of Highway and Transport, 28(8), 50–8.
[84] Yang, J., et al. (2007). Flexural behavior of ultra-high performance concrete beams pre-stressed with CFRP tendons. Hunan University, Changsha, China.
[85] Tao, Y., & Chen, J. F. (2015). Concrete damage plasticity model for modeling FRP-to-concrete bond behavior. Journal of Composites for Construction, 19(1), 04014026. https://doi.org/10.1061/(asce)cc.1943-5614.0000482
[86] Demir, H., Ozturk, K., Edip, M., Stojmanovska, A., & Bogdanovic, A. (2017). Effect of viscosity parameter on the numerical simulation of reinforced concrete deep beam behavior. Journal of Mechanical Science and Technology, 8(3), 50–56.
[87] Mander, J. B., Priestley, M. J. N., & Park, R. (1988). Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 114(8), 1804–1826.
[88] Richart, F. E., Brandtzaeg, A., & Brown, R. L. (1928). A study of the failure of concrete under combined compressive stresses (Bulletin 185). University of Illinois Engineering Experimental Station, Champaign, Ill.
[89] El-Tawil, S., & Deierlein, G. G. (1999). Strength and ductility of concrete encased composite columns. Journal of Structural Engineering, 125(9), 1009–1019.
[90] Dassault Systèmes Corporation. (2023). SIMULIA Abaqus Analysis User's Manuals, Theory Manuals and Example Problems Manuals. France.