簡易檢索 / 詳目顯示

研究生: 賴世勳
Lai, Shih-Hsun
論文名稱: 紫外光之光點陣列斜掃描法實現無光罩微影技術
Maskless Lithography Technology Realized by UV-light Point Array Oblique Scanning Method
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 紫外光點陣列掃描斜掃描無光罩微影數位光罩
外文關鍵詞: UV spot point array, Oblique scanning, Maskless lithography, DMD (digital micromirror device)
相關次數: 點閱:79下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為UV光點陣列掃描來取代傳統光罩的微影技術,傳統微影製程製作光罩的花費與時間為負擔,變更微影圖形須重新製作光罩,UV光點陣列掃描不需要製作成本,且擁有極大靈活性。
    本文開發了以UV光點陣列斜拖拉式演算法,系統架構使用波長405nm之紫外光(H-Line),透過數位微鏡面裝置(Digital Micro-mirror Device, DMD)控制每個光點開關,光線通過第一鏡組成像於微透鏡陣列,微透鏡陣列重新聚光後通過空間濾波器,透過空間濾波的方式濾除雜散光,再由第二鏡組成像為一光點陣列,本文使用的陣列大小為204 153,實際大小為13.89 10.4 mm2,並由XYZ平台控制試片移動。本文使用斜掃描法提高光點陣列掃描精度,利用多套圖檔(*.bmp)輸入控制板控制DMD,透過自己撰寫模擬軟體,檢查圖案是否正確,且可模擬曝光實驗,預測曝光速度與線寬間的關係。光阻選用高感光度光阻S1813,厚度1 μm,光點大小16.2 μm(FWHM),由直線測試最小線寬,並測試直角、斜線、圓弧等代表性圖形,最終成功於4吋基板曝光大面積5.1 x 3.7 cm2之電路圖形之製作,可達到最小線寬9.2 μm、線增量1.5 μm之任意不規則圖形的曝光。

    This study develops a maskless lithography system using arrayed ultraviolet (UV) light spots with an obliquely scanning method. A 405 nm UV light emitting diode (LED) is used as the illumination source. A digital micromirror device (DMD) acts as the switches of the UV spots. UV Light reflected by DMD is projected to an microlens array and focused into a pinhole array which acts as a spatial filter array. After the pinhole array, the DMD-switched UV light is projected onto a photo-resist layer deposited on a substrate. The substrate is moving by an XYZ stage for carrying out maskless lithography. The size of arrayed UV spots points is 204 by 153 with an actual area size of 13.89 10.4 mm2. A software is developed for controlling the oblique scanning movement and synchronizing with transmitting image files to DMD controller to reach high pattern resolution. High sensitivity positive photoresist (S1813) with a thickness of 1 μm is used. The UV spot size is 16.2 μm (FWHM). Finally this study successfully exposure arbitrary graphics with large area on a 4 inch substrate. The minimum line width is 9.2 μm and the minimum increasing of line width is 1.5 μm.

    中文摘要 I 致謝 II 目錄 X 圖目錄 XIII 表目錄 XIX 第1章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 論文綱要 6 第2章 光點陣列式任意斜率斜掃描原理與程式設計 7 2.1 斜率整數之斜掃描法 8 2.2 斜率非整數之斜掃描法 13 2.3 光點陣列式斜掃描法程式撰寫 15 2.3.1 輸出圖檔至DMD之出圖系統 15 2.3.2 修正型出圖系統 19 第3章 無光罩式微影系統硬體架構 24 3.1 整體系架構 24 3.2 光學系統架構 25 3.2.1 光源 26 3.2.2 數位微鏡面反射裝置(Digital Micromirror Device, DMD)與控制板 28 3.2.3 第一成像鏡組 34 3.2.4 微透鏡陣列與空間濾波器 (Microlens and Spatial filter array, MLSFA) 35 3.2.5 第二成像鏡組 43 3.3 雙軸運動平台 44 3.3.1 雙軸運動平台程式控制 44 3.3.2 雙軸運動平台與DMD之控制 45 第4章 斜掃描曝光劑量與線寬模擬 50 4.1 光源模型 50 4.2 曝光劑量與線寬模擬 52 第5章 實驗過程與結果 59 5.1 實驗前處理與測試 59 5.1.1 光學機台架設與校正 60 5.1.2 DMD對齊MLSFA與旋轉角度校正 62 5.1.3 光阻、聚焦面與曝光能量測試 64 5.1.4 光點陣列量測 70 5.1.5 能量殘留率 74 5.2 實驗設備 76 5.3 實驗步驟 79 5.4 斜掃描拖拉之實驗結果 80 5.4.1 最小線寬探討 81 5.4.1 直角、斜線、圓弧之實驗結果 82 5.4.2 尖角測試 85 5.4.3 大面積電路圖形實驗結果 85 第6章 結論與未來展望 93 6.1 結論 93 6.2 未來展望 95 參考文獻 97

    [1] R. Seltmann, W. Doleschal, A. Gehner, H. Kück, R. Melcher, J. Paufler, et al., "New system for fast submicron optical direct writing," Microelectronic engineering, vol. 30, pp. 123-127, 1996.
    [2] K. Takahashi and J. Setoyama, "A UV‐exposure system using DMD," Electronics and Communications in Japan (Part II: Electronics), vol. 83, pp. 56-58, 2000.
    [3] Y.-L. Cheng, M.-L. Li, J.-H. Lin, J.-H. Lai, C.-T. Ke, and Y.-C. Huang, "Development of dynamic mask photolithography system," in IEEE International Conference on Mechatronics, 2005. ICM'05., pp. 467-471, 2005.
    [4] Jae Won Choi, Young Myoung Ha, Seok Hee Lee, and Kyung Hyun Choi, "Design of microstereolithography system based on dynamic image projection for fabrication of three-dimensional microstructures, " Journal of Mechanical Science and Technology, vol. 20, pp. 2094-2104, 2006.
    [5] K. F. Chan, Z. Feng, R. Yang, A. Ishikawa, and W. Mei, "High-resolution maskless lithography," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 2, pp. 331-339, 2003.
    [6] H. Ryoo, D. W. Kang, and J. W. Hahn, "Analysis of the line pattern width and exposure efficiency in maskless lithography using a digital micromirror device," Microelectronic Engineering, vol. 88, pp. 3145-3149, 2011.
    [7] H. Ryoo, D. W. Kang, Y.-T. Song, and J. W. Hahn, "Experimental analysis of pattern line width in digital maskless lithography," Journal of Micro/Nanolithography, MEMS, and MOEMS, vol. 11, pp. 023004-1-023004-6, 2012.
    [8] 邱繼正, 「準分子雷射微細加工系統建構及微透鏡陣列之製作與應用」, 國立台灣科技大學機械工程學系碩士論文, 2004.
    [9] H. Ryoo, D. W. Kang, and J. W. Hahn, "Analysis of the effective reflectance of digital micromirror devices and process parameters for maskless photolithography," Microelectronic Engineering, vol. 88, pp. 235-239, 2011.
    [10] X. Guo, J. Du, Y. Guo, C. Du, Z. Cui, and J. Yao, "Simulation of DOE fabrication using DMD-based gray-tone lithography," Microelectronic engineering, vol. 83, pp. 1012-1016, 2006.
    [11] Jun-Gyu Hur, "Maskless fabrication of three-dimensional microstructures with high isotropic resolution: practical and theoretical considerations," Applied optics, vol. 50, pp. 2383-2390, 2011.
    [12] K. F. Chan, Junsin Yi, Sung-Hak Cho, Nam-Hyun Kang, Myung-Woo Cho, Bo-Sung Shin, and Byoungdeog Choi, " SLM-based maskless lithography for TFT-LCD," Applied Surface Science, vol. 255, pp. 7835-7840, 2009.
    [13] Y. Li, W. Yan, J. Wang, Y. Yang, and L. Zhao, "Methods of eliminating the grid effect based on DMD technique of maskless lithography," in 5th International Symposiμm on Advanced Optical Manufacturing and Testing Technologies, pp. 765716-765716-7, 2010.
    [14] K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, "Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD," Optics & Laser Technology, vol. 56, pp. 367-371, 2014.
    [15] J.-Y. Hur and M.-S. Seo, "Optical proximity corrections for digital micromirror device-based maskless lithography," Journal of the Optical Society of Korea, vol. 16, pp. 221-227, 2012.
    [16] I.-B. Park, Y.-M. Ha, and S.-H. Lee, "Still motion process for improving the accuracy of latticed microstructures in projection microstereolithography," Sensors and Actuators A: Physical, vol. 167, pp. 117-129, 2011.
    [17] D. Dudley, W. M. Duncan, and J. Slaughter, "Emerging digital micromirror device (DMD) applications," in Micromachining and Microfabrication, SPIE, vol. 4985, pp. 14-25, 2003.
    [18] N. Takeda, "Ball semiconductor technology and its application to MEMS," in Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, pp. 11-16, 2000.
    [19] 溫宗倫, 「曲面光束筆暨旋轉步階微影技術應用於無縫滾筒模仁之製作」, 國立成功大學機械工程學系碩士論文, pp. 17-19, 2015.
    [20] 黃育嘉, 「動態光罩式三維微影系統之研發」, 國立台灣科技大學機械工程學系碩士論文, 2004.
    [21] 蒲鑫達, 「紫外光DMD無光罩微影系統之發展」, 國立台灣科技大學機械工程學系碩士論文, 2009.
    [22] Texas Instruments, "DLP7000 DLP® 0.7 XGA 2x LVDS Type A DMD Data Sheet," 2015.
    [23] Texas Instruments, "DLP Discovery™ 4100 Chipset Interface Manual," 2013.
    [24] Texas Instruments, "DLP Discovery™ 4100 Starter Kit Technical Reference Manual," 2009.
    [25] SHIPLEY, "Microposit S1800 Series Photo Resists,".
    [26] Texas Instruments, " Introduction to Digital Micromirror Device (DMD)Technology," 2013.

    無法下載圖示 校內:2021-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE