| 研究生: |
戴伯璋 Dai, Po-Chang |
|---|---|
| 論文名稱: |
圓錐殼大變形理論分析 Large Deformation Theory of Conical Shell |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 微分再生核近似法 、圓錐殼理論 、非線性理論 |
| 外文關鍵詞: | Newton-Raphson method, Differential Reproducing Kernel Method, conical shell theory |
| 相關次數: | 點閱:113 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文內容主要為推導出一套適合分析大變位的圓錐殼理論,並配合使用「微分再生核近似法(Differential Reproducing Kernel Approximation Method, DRKM)」直接處理圓錐殼二維偏微分聯立方程組。數值求解時配合Newton-Raphson method將圓錐殼平衡方程式以及邊界條件線性化,利用迭代方式求得圓錐殼變形後最終狀態的位置,進而分析變形後的各項力學行為。數值範例分析三種不同形狀,兩種不同邊界條件下所產生的snap-through情形。
Abstract
In this paper, form the configurations of the opened conical shell before and after deformed, we derive its strains and equilibrium equations under large displacement. Using the coordinates of the middle surface of the open conical shell and its transverse shear strains as the field functions, five nonlinear partial differential equations are established for the system. To solve those nonlinear equations, we adopt the Newton-Raphson method to linearlize the differential equations and using the differential reproducing kernel method to solve the linearlized differential equations. A numerical solution for snap-through for the opened conical shell under two different boundry conditions.
參考文獻
[1] Donnell, L.H, Beams,plates and shells. New York: McGraw-Hill 1976.
[2] Flugge, W.Stresses in Shells. New York:Springer-Verlag 1973.
[3] Love ,A.E.H. A Treatise on the Mathematical Theory of Elastic. New York:Dover 1944.
[4] Sander, J.L. NASA-TR-R21. An improved first approximation theory for thin shells 1959.
[5] Kraus, H. Thin Elastic Shells. New York: Wiley 1967
[6] Chandrashekhar K, Karekar MS, Bending analysis of a conical shell panel. Int. J. Solid Struct. 1992
[7] Cui W, Pei J, Zhang W, A simple and accurate solution for calculating stresses in conical shells. Comput. & Struct. 2001
[8] Tavares SA, Thin conical shells with constant thickness and under axisymmetric load. Comput. & Struct. 1996
[9] Mindlin , R.D., Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates,Transactions of the American Society of Mechanical Engineers,Journal of Applicated Mechanics, 1951
[10] Timoshenko, S., Theory of Plates and Shells., McGraw-Hill Book Company,Inc.,London,1940
[11] 李家瑋, 複合圓柱層殼Love理論之幾何非線性饒曲分析, 國立成功大學土木工程研究所碩士論文, 2002.
[12] 魏敬訓, 微分再生核近似法於大變形樑分析之應用, 國立成功大學土木工程研究所碩士論文, 2005