簡易檢索 / 詳目顯示

研究生: 戴伯璋
Dai, Po-Chang
論文名稱: 圓錐殼大變形理論分析
Large Deformation Theory of Conical Shell
指導教授: 王永明
Wang, Yung-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 微分再生核近似法圓錐殼理論非線性理論
外文關鍵詞: Newton-Raphson method, Differential Reproducing Kernel Method, conical shell theory
相關次數: 點閱:113下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本文內容主要為推導出一套適合分析大變位的圓錐殼理論,並配合使用「微分再生核近似法(Differential Reproducing Kernel Approximation Method, DRKM)」直接處理圓錐殼二維偏微分聯立方程組。數值求解時配合Newton-Raphson method將圓錐殼平衡方程式以及邊界條件線性化,利用迭代方式求得圓錐殼變形後最終狀態的位置,進而分析變形後的各項力學行為。數值範例分析三種不同形狀,兩種不同邊界條件下所產生的snap-through情形。

    Abstract

    In this paper, form the configurations of the opened conical shell before and after deformed, we derive its strains and equilibrium equations under large displacement. Using the coordinates of the middle surface of the open conical shell and its transverse shear strains as the field functions, five nonlinear partial differential equations are established for the system. To solve those nonlinear equations, we adopt the Newton-Raphson method to linearlize the differential equations and using the differential reproducing kernel method to solve the linearlized differential equations. A numerical solution for snap-through for the opened conical shell under two different boundry conditions.

    目錄 摘要........................................................Ⅰ 誌謝........................................................Ⅲ 目錄........................................................Ⅳ 圖目錄......................................................Ⅵ 第一章 緒論..................................................1 1.1研究動機與文獻回顧........................................1 1.2本文架構..................................................5 第二章 圓錐殼大變形之理論推導................................7 2.1 在參考構形狀態下圓錐殼的中曲面特性的描述.............7 2.2 在變形後構形狀態下圓錐殼的中曲面特性的描述..........10 2.3 平衡方程式..........................................12 2.4 薄殼應變...........................................15 2.5 本構關係...........................................17 2.6 解析架構...........................................18 2.7 邊界條件...........................................22 第三章 微分再生核近似理論...................................25 3.1 離散再生核近似(Discrete Reprodeucing Kernel Approximation)..............................................25 3.2 再生核函數的微分....................................27 3.3 加權函數與鄰近點的選取..............................30 第四章 數值解法.............................................32 4.1 Newton-Raphson method...............................32 4.2 圓錐殼大變形控制方程式..............................33 4.3 邊界條件............................................37 4.4 微分再生核解法與求解過程............................39 第五章 數值算例:Snap-through...............................41 5.1 向兩邊鉸接, 向兩邊自由端相互對稱的 snap-through情形............................................42 5.1.1 矩形............................................42 5.1.2 方形............................................44 5.2 向兩邊鉸接, 向兩邊自由端相互對稱的 snap-through情形............................................46 第六章 結論.................................................49 參考文獻....................................................65 自述........................................................67 圖目錄 【圖2.1】圓錐殼示意圖.......................................50 【圖2.2】微小薄殼受力圖.....................................50 【圖2.3】圓錐殼上自由端示意圖...............................51 【圖2.4】自由端上某點應力分解圖.............................51 【圖2.5】圓錐殼上鉸支承示意圖...............................52 【圖2.6】鉸支承上某點應力分解圖.............................52 【圖5.1】 向兩邊鉸接, 向兩邊自由端相互對稱示意圖...........53 【圖5.1.1.2】 向兩短邊鉸接, 向兩長邊自由端之佈點圖.........53 【圖5.1.1.3】sfsf未受力前之結構圖...........................54 【圖5.1.1.4】sfsf均佈載重與中點變位關係圖...................54 【圖5.1.1.5】圓錐薄殼受均佈載重在-0.5 之變形圖..............55 【圖5.1.1.6】圓錐薄殼受均佈載重在-0.55 之變形圖.............55 【圖5.1.1.7】圓錐薄殼受均佈載重在0.3 之變形圖...............56 【圖5.1.1.8】圓錐薄殼受均佈載重在0.35 之變形圖..............56 【圖5.1.2.2】接近方形之圓錐薄殼佈點圖.......................57 【圖5.1.2.3】接近方形之圓錐薄殼未受力前之結構圖.............57 【圖5.1.2.4】接近方形之圓錐薄殼均佈載重與中點變位關係圖.....58 【圖5.1.2.5】方形圓錐薄殼受均佈載重在-1.55 之變形圖.........58 【圖5.1.2.6】方形圓錐薄殼受均佈載重在-1.6 之變形圖..........59 【圖5.1.2.7】方形圓錐薄殼受均佈載重在1.15 之變形圖..........59 【圖5.1.2.8】方形圓錐薄殼受均佈載重在1.2 之變形圖...........60 【圖5.2.1】 向兩邊鉸接, 向兩邊自由端相互對稱示意圖.........60 【圖5.2.2】 向兩短邊鉸接, 向兩長邊自由端之佈點圖...........61 【圖5.2.3】fsfs未受力前之結構圖.............................61 【圖5.2.4】fsfs均佈載重與中點位移關係圖.....................62 【圖5.2.5】fsfs圓錐薄殼受均佈載重在-1.565 之變形圖..........62 【圖5.2.6】fsfs圓錐薄殼受均佈載重在-1.6 之變形圖............63 【圖5.2.7】fsfs圓錐薄殼受均佈載重在-1.605 之變形圖..........63 【圖5.2.8】fsfs圓錐薄殼受均佈載重在1.003 之變形圖...........64 【圖5.2.9】圓錐薄殼受均佈載重在1.002 之變形圖...............64

    參考文獻

    [1] Donnell, L.H, Beams,plates and shells. New York: McGraw-Hill 1976.

    [2] Flugge, W.Stresses in Shells. New York:Springer-Verlag 1973.

    [3] Love ,A.E.H. A Treatise on the Mathematical Theory of Elastic. New York:Dover 1944.

    [4] Sander, J.L. NASA-TR-R21. An improved first approximation theory for thin shells 1959.

    [5] Kraus, H. Thin Elastic Shells. New York: Wiley 1967

    [6] Chandrashekhar K, Karekar MS, Bending analysis of a conical shell panel. Int. J. Solid Struct. 1992

    [7] Cui W, Pei J, Zhang W, A simple and accurate solution for calculating stresses in conical shells. Comput. & Struct. 2001

    [8] Tavares SA, Thin conical shells with constant thickness and under axisymmetric load. Comput. & Struct. 1996

    [9] Mindlin , R.D., Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Plates,Transactions of the American Society of Mechanical Engineers,Journal of Applicated Mechanics, 1951

    [10] Timoshenko, S., Theory of Plates and Shells., McGraw-Hill Book Company,Inc.,London,1940

    [11] 李家瑋, 複合圓柱層殼Love理論之幾何非線性饒曲分析, 國立成功大學土木工程研究所碩士論文, 2002.
    [12] 魏敬訓, 微分再生核近似法於大變形樑分析之應用, 國立成功大學土木工程研究所碩士論文, 2005

    下載圖示 校內:2007-08-29公開
    校外:2007-08-29公開
    QR CODE