簡易檢索 / 詳目顯示

研究生: 張復堯
Chang, Fu-Yao
論文名稱: 基於BIM與AI應用下的設計協作 -從室內設計到施工圖的全流程探討
The design process under the application of BIM and AI Full process exploration from interior design to construction drawings
指導教授: 鄭泰昇
Jeng, Tay-Sheng
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 86
中文關鍵詞: 建築資訊模型生成式人工智慧室內設計
外文關鍵詞: Building Information Modeling (BIM), Generative Artificial Intelligence (GAI), Stable Diffusion, Architecture, Engineering & Construction (AEC)
相關次數: 點閱:63下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,建築、工程與營造(AEC)行業經歷前所未有的數位化轉型,特別是生成式人工智慧(GAI)和建築資訊模型(BIM)技術的廣泛應用,為行業帶來巨大的變革。本研究深入探討GAI在建築設計領域的應用及其與BIM技術的整合,旨在揭示這些先進技術如何推動設計流程的創新和最佳化。
    本論文探討GAI技術、文生圖像、文本轉換、以及網路爬蟲技術在室內設計的應用,從概念到實現的過程,聚焦在GAI如何提高設計效率、促進創新思維、以及強化設計方案溝通中的潛力和挑戰。
    研究實驗顯示,GAI與BIM的結合不僅提升設計過程的效率,還增加設計方案的多樣性和創新性。例如,使用GAI工具如Stable Diffusion在網頁端整合,使得設計師和業主能夠以更直觀的方式進行溝通,並快速反覆修改設計方案。同時,整合GAI工具使設計師能夠迅速將創意轉化為詳盡的3D模型。
    本研究探討從“湧現到實現”的設計過程,基於BIM與GAI應用的設計協作。以室內設計流程為例,展示GAI在設計階段的關鍵作用,並驗證這一過程的加速效果。研究成果顯示,GAI加BIM資訊重組通過網路爬蟲和標籤對齊的技術,提高計劃資訊的收集和管理效率。GAI在提升設計效率和創意表現的潛力,結合BIM技術的平台在數據管理和透明化方面提供效益,然而,技術的應用仍面臨諸多問題和人工協作的不可替代性等挑戰,工作流程也需隨之調整,以適應新技術的導入。

    In recent years, the Architecture, Engineering, and Construction (AEC) industry has experienced significant digital transformation through the adoption of Generative Artificial Intelligence (GAI) and Building Information Modeling (BIM). This study explores the integration of GAI in architectural design with BIM, focusing on how these technologies drive innovation and optimize design processes. It examines how GAI technologies, such as text-to-image and web crawling, accelerate the transition from concept to realization in interior design. The study also addresses the potential and challenges of GAI in enhancing design efficiency, promoting innovation, and improving communication.
    The results indicate that combining GAI and BIM improves design efficiency and increases the diversity and innovation of proposals. For example, tools like Stable Diffusion and ComfyUI facilitate intuitive communication and quick iteration between designers and clients. Additionally, GAI enables rapid transformation of ideas into detailed 3D models. However, there are limitations, such as inconsistent data quality and a disconnect between generated content and the real world. Moreover, GAI cannot fully replace human resources and traditional design processes involving collaboration and site management. Challenges in technology integration include the need for interdisciplinary knowledge, compatibility issues, and privacy and legal considerations.
    This study underscores the importance of human-centered design in the digital transformation of the AEC field. By integrating GAI and BIM, future architectural design processes can become more efficient, sustainable, and aligned with user needs and market dynamics. Future research will explore overcoming current technological limitations and better integrating AI into design and construction processes to achieve comprehensive industry innovation.

    SUMMARY 2 INTRODUCTION 2 METHOD 3 RESULT AND DISCUSSSION 3 CONCLUSION 4 誌謝 5 目錄 6 表目錄 9 圖目錄 10 第一章、緒論 1 1.1 背景與動機 1 1.1.1 傳統設計流程面臨的困境 1 1.1.2 生成式人工智慧的出現 2 1.2 研究問題 2 1.2.1 語音辨識結合GAI快速生成設計方案 3 1.2.2 方案及時導入至BIM當中 3 1.2.3 爬取元件資訊並結合到BIM當中 3 1.3 研究問題 4 1.3.1 GAI技術如何在建築設計中發揮作用? 4 1.3.2 BIM如何結合GAI提升設計效率? 4 1.3.3 BIM結合GAI的研究價值? 4 1.4 研究範疇及架構 5 1.4.1 研究範疇 5 1.4.2 研究架構 6 第二章、文獻回顧 9 2.1 建築設計的發展歷程 10 2.1 AEC數位轉型與BIM技術結合 12 2.2 BIM發展歷程 12 2.2.1 BIM技術在設計階段的應用 14 2.2.2 基於BIM的室內設計應用 15 2.3 GAI與BIM技術的結合 17 2.3.1 GAI的出現與湧現 17 2.3.2 Stable Diffusion的出現 18 2.3.3 其他的新興技術 19 2.4 小結 20 第三章、系統架構 21 3.1 需求分析 22 3.1.1 介面設計規劃 23 3.2 系統開發與規劃 24 3.2.1 語音轉文字 27 3.2.2 3D 掃描技術 27 3.2.3 家具自動配置 28 3.2.4 GAI渲染圖生成 29 3.2.5 建材與家具 29 第四章、AI在室內設計的實務操作 31 4.1 語音轉錄生成提示詞 32 4.1.1 即時記錄 32 4.1.2 提示詞專業術語 33 4.1.3 自動化管理 34 4.2 3D掃描 34 4.2.1 案例:楊宅 - 台中市西屯區 34 4.3 AI平面圖配置生成 41 4.4 AI渲染圖 46 4.4.1 評估AI生成室內設計渲染圖的標準 50 4.5 AI影像辨識室內設計元件 51 4.5.1 影像辨識到物件編號 54 4.5.2 BIM物件編號與網頁爬蟲 56 4.6 結果分析 56 4.6.1 GAI 技術如何在建築設計中發揮作用? 56 4.6.2 BIM 如何結合 GAI 提升設計效率? 57 4.6.3 爬蟲技術如何加速 BIM 資訊建立? 57 4.1 小結 57 第五章、結論與建議 60 5.1 建築資訊模型(BIM)技術的核心角色 60 5.2 GAI技術應用於室內設計 60 5.3 GAI技術瓶頸與限制 61 5.1 技術局限與數據挑戰 62 5.2 安全性與隱私問題 62 5.3 GAI技術的“幻覺”問題 63 5.4 總結 63 參考文獻 65

    Abd Hamid, A. B., & Embi, M. R. (2016). Review on application of Building Information Modelling in interior design industry. MATEC Web of Conferences,
    AbouHamad, M., & Abu-Hamd, M. (2019). Framework for construction system selection based on life cycle cost and sustainability assessment. Journal of Cleaner Production, 241, 118397.
    Bengesi, S., El-Sayed, H., Sarker, M. K., Houkpati, Y., Irungu, J., & Oladunni, T. (2024). Advancements in Generative AI: A Comprehensive Review of GANs, GPT, Autoencoders, Diffusion Model, and Transformers. IEEE Access.
    Caixeta, M. C. B. F., Tzortzopoulos, P., & Fabricio, M. M. (2019). User involvement in building design–a state-of-the-art review. PosFAUUSP, 26(48), e151752-e151752.
    Chen, X., Chang-Richards, A., Ling, F. Y. Y., Yiu, T. W., Pelosi, A., & Yang, N. (2024). Digital technologies in the AEC sector: a comparative study of digital competence among industry practitioners. International Journal of Construction Management, 1-14.
    comfyanonymous. (2023). ComfyUI. https://github.com/comfyanonymous/ComfyUI
    Documents, B. A. C. (2022). Introducing AIA Contract Documents’ 2022 BIM Documents.
    Eastman, C., & Computing, D. (2001). New directions in design cognition: studies of representation and recall. In Design knowing and learning: Cognition in design education (pp. 147-198). Elsevier.
    EN, C. (2011). 15978—Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method. European Standards: Brussels, Belgium.
    Esfahani, M. E., Rausch, C., Sharif, M. M., Chen, Q., Haas, C., & Adey, B. T. (2021). Quantitative investigation on the accuracy and precision of Scan-to-BIM under different modelling scenarios. Automation in Construction, 126, 103686.
    Gero, J. S. (1990). Design prototypes: a knowledge representation schema for design. AI magazine, 11(4), 26-26.
    Gero, J. S. (2000). Computational models of innovative and creative design processes. Technological forecasting and social change, 64(2-3), 183-196.
    GhaffarianHoseini, A., Zhang, T., Nwadigo, O., GhaffarianHoseini, A., Naismith, N., Tookey, J., & Raahemifar, K. (2017). Application of nD BIM Integrated Knowledge-based Building Management System (BIM-IKBMS) for inspecting post-construction energy efficiency. Renewable and Sustainable Energy Reviews, 72, 935-949.
    Grauman, K., Westbury, A., Torresani, L., Kitani, K., Malik, J., Afouras, T., Ashutosh, K., Baiyya, V., Bansal, S., & Boote, B. (2024). Ego-exo4d: Understanding skilled human activity from first-and third-person perspectives. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
    Hettithanthri, U., Hansen, P., & Munasinghe, H. (2023). Exploring the architectural design process assisted in conventional design studio: a systematic literature review. International Journal of Technology and Design Education, 33(5), 1835-1859.
    Ho, J., Jain, A., & Abbeel, P. (2020). Denoising Diffusion Probabilistic Models. arXiv:2006.11239. Retrieved June 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv200611239H
    Hong, S.-H., Lee, S.-K., & Yu, J.-H. (2019). Automated management of green building material information using web crawling and ontology. Automation in Construction, 102, 230-244.
    Huang, Y. (2024). Latent Auto-recursive Composition Engine.
    Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J., & Amodei, D. (2020). Scaling Laws for Neural Language Models. arXiv:2001.08361. Retrieved January 01, 2020, from https://ui.adsabs.harvard.edu/abs/2020arXiv200108361K
    Keita, M., Hamidouche, W., Eutamene, H. B., Hadid, A., & Taleb-Ahmed, A. (2024). Bi-LORA: A Vision-Language Approach for Synthetic Image Detection. arXiv preprint arXiv:2404.01959.
    Li, X., Shen, G. Q., Wu, P., & Yue, T. (2019). Integrating building information modeling and prefabrication housing production. Automation in Construction, 100, 46-60.
    Li, Z., Müller, T., Evans, A., Taylor, R. H., Unberath, M., Liu, M.-Y., & Lin, C.-H. (2023). Neuralangelo: High-fidelity neural surface reconstruction. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
    Liu, J., Xu, D., Hyyppä, J., & Liang, Y. (2021). A survey of applications with combined BIM and 3D laser scanning in the life cycle of buildings. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 5627-5637.
    Lu, K., Jiang, X., Yu, J., Tam, V. W. Y., & Skitmore, M. (2021). Integration of life cycle assessment and life cycle cost using building information modeling: A critical review. Journal of Cleaner Production, 285, 125438. https://doi.org/10.1016/j.jclepro.2020.125438
    Nwodo, M. N., & Anumba, C. J. (2019). A review of life cycle assessment of buildings using a systematic approach. Building and Environment, 162, 106290.
    Radford, A., Kim, J. W., Xu, T., Brockman, G., McLeavey, C., & Sutskever, I. (2023). Robust speech recognition via large-scale weak supervision. International conference on machine learning,
    Segara, S., Li, Q. J., Gallotta, A., Wang, Y., Gosling, J., & Rezgui, Y. (2024). A taxonomy of circularity indicators for the built environment: Integrating circularity through the Royal Institute of British architects (RIBA) plan of work. Journal of Cleaner Production, 141429.
    Suwa, M., Gero, J., & Purcell, T. (2000). Unexpected discoveries and S-invention of design requirements: important vehicles for a design process. Design studies, 21(6), 539-567.
    Talib, M., Al-Noori, A. H., & Suad, J. (2024). YOLOv8-CAB: Improved YOLOv8 for Real-time object detection. Karbala International Journal of Modern Science, 10(1), 5.
    Wang, J., Wang, X., Shou, W., & Xu, B. (2014). Integrating BIM and augmented reality for interactive architectural visualisation. Construction Innovation, 14(4), 453-476.
    Wang, K., Guo, F., Zhang, C., Hao, J., & Schaefer, D. (2022). Digital technology in architecture, engineering, and construction (AEC) industry: Research trends and practical status toward construction 4.0. Construction Research Congress 2022,
    Wang, Q., Guo, J., & Kim, M.-K. (2019). An application oriented scan-to-BIM framework. Remote Sensing, 11(3), 365.
    Wang, T., & Chen, H.-M. (2023). Integration of building information modeling and project management in construction project life cycle. Automation in Construction, 150, 104832.
    Watts, R. D. (1966). The elements of design. The design method, 85-95.
    Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., & Metzler, D. (2022). Emergent abilities of large language models. arXiv preprint arXiv:2206.07682.
    Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang, P., Dean, J., & Fedus, W. (2022). Emergent Abilities of Large Language Models. arXiv:2206.07682. Retrieved June 01, 2022, from https://ui.adsabs.harvard.edu/abs/2022arXiv220607682W
    Yi, H., & Wang, W. (2016). The Application of Building Information Modeling in Interior Design. 2016 International Conference on Sensor Network and Computer Engineering,
    吳典育. (2018). BIM整合操作運用之設計流程研究 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/3vur7f
    鄭泰昇. (2016). BIM雲端作業之先導應用與AEC產業4.0升級策略規劃研究.
    鄭泰昇. (2020). AI 人工智慧輔助 BIM 衍生設計之研究.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE