簡易檢索 / 詳目顯示

研究生: 劉祐翔
Liu, Yu-Hsiang
論文名稱: 圓柱中性扭轉問題於Cosserat彈性材料之探討
Neutral inclusion in circular shafts under torsion in Cosserat media
指導教授: 陳東陽
Chen, Tung-yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 73
中文關鍵詞: Cosserat彈性理論聖維南柱體中性內含物
外文關鍵詞: Cosserat elasticity, Saint-Venant cylinder, neutral inclusion
相關次數: 點閱:126下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因材料固有的尺度效應,在微觀尺度下,其微結構效應的影響將不可忽略,傳統古典彈性力學無法適切描述材料的變形行為,利用Cosserat彈性理論可以做更精確地分析。本文將比較Cosserat彈性理論與傳統古典彈性力學的不同,其主要不同點在於Cosserat彈性理論多出了三個獨立微旋轉參數,所以在組成律、平衡方程式和幾何方程式均含有旋轉量的影響,並於此理論基礎下,推導材料為中心對稱及非中心對稱聖維南柱體純拉伸作用下的變形場,檢視推導出的變形場與在傳統古典彈性力學下的異同。另本文也探討均質、等向且中心對稱之Cosserat彈性材料圓柱受到扭轉作用下中性內含物的問題,利用推導出均質、等向且中心對稱之Cosserat彈性材料圓柱受到扭轉作用下的變形場解,建立fiber和coating的關係式,並解得滿足平衡方程式的通解,再利用邊界條件關係式,建立求解待定係數及內含物等效材料係數的方程組,最後推導內含物等效材料係數的關係式,使得內含物置入基質後,內含物外基質部分的場量函數並不會因此而改變。

    Under certain length scale, the framework of classical elasticity will not be capable to suitably characterize the deformation behavior of materials, due to its intrinsic length scales in the microstructures. This work is motivated by a recent interest of designing metamaterials with negative mass density and negative elastic moduli, in which a number of known structures possess a macroscopic behavior with Cosserat elasticity. We first review the progress of research works in Cosserat elasticity. A preliminary mathematical framework of Cosserat elasticity, in which, in addition to three displacements, three microrotations are incorporated in the formulation to describe the deformation behavior. Based on the mathematical framework, we derived the deformation field of a Saint-Venant cylinder under simple tension with both centrosymmetric and non-centrosymmetric constitutive relations. We also examine the possibility of neutral inclusion under torsion in a homogeneous, isotropic and centrosymmetric Cosserat elastic cylinder. The known solution of a homogeneous, isotropic and centrosymmetric Cosserat elastic cylinder under torsion is utilized to derive the possible combination of material parameters for a coated cylinder so that, under the twisting deformation mode, the fields in the matrix remain unchanged. This was generally referred to as neutral inclusion in torsion. We derive the general equilibrium equations for the fiber and for the coating. We utilize boundary conditions to construct system of equations for solving undetermined coefficients and effective modulus. This work is a preliminary study to look into the possibility of neutral composite cylinders.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 第一章 緒論 1 1.1 研究動機 1 1.2 理論背景與文獻回顧 1 1.3 內容安排與論文架構 4 第二章 Cosserat彈性理論介紹 5 2.1 問題描述 5 2.2 Cosserat理論中的微旋轉、曲率、應變和應力 5 2.3 Cosserat彈性理論基本方程式整理 17 第三章 Cosserat彈性理論範例 18 3.1 均質、等向且中心對稱之Cosserat彈性理論拉伸問題 18 3.2 均質、等向且非中心對稱之Cosserat彈性理論拉伸問題 22 第四章 Cosserat中性扭轉 27 4.1 中性內含物介紹 27 4.2 推導程序 29 4.3 求解Cosserat中性扭轉問題 30 第五章 結論與未來展望 46 5.1 結論 46 5.2 未來展望 47 參考文獻 48 附錄A 廣義聖維南問題求解方法 52 附錄B Cosserat 實心圓柱之扭轉問題 59 B.1 均質、等向且中心對稱廣義聖維南問題 59 B.2 基本方程式 60 B.3 Cosserat 圓柱扭轉求解 62 B.4 求解扭轉剛度 68 B.5 延伸討論 72 附錄C Modified Bessel Functions 73

    Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions, Dover, 1046, 1964.

    Cosserat, E. and Cosserat, F., Théorie des corps déformables, Paris, A. Hermann et fils, 1909.

    Chiu, B. M. and Lee, J. D., On the plane problem in micropolar elasticity, Int. J. Engng. Sci., 11, 997-1012, 1973.

    Chen, T., Torsion of a rectangular checkerboard and the analogy between rectangular and curvilinear cross-section, Quart. J. Mech. Appl. Math, 54, 227-241, 2001.

    Duhem, P., Le potentiel thermodynamique et la pression hydrostatique, Ann École Norm. (3), 10, 187-230, 1893.

    Day, W A., Generalized torsion:the solution of a problem of Truesdell’s, Arch. Rat. Mech. Anal., 76(3), 283-288, 1981.

    Donescu, S., Chiroiu, V., Munteanu, L., On the Young’s modulus of an auxetic composite structure, Mech. Res. Comm., 36, 294-301, 2009.

    Eriksen, J. and Truesdell, C., Exact theory of stress and strain in rods and shells, Arch. Ration. Mech. An., 1, 295-323, 1958.

    Eringen, A. C. and Suhubi, E. S., Non-linear theory of simple micro-elastic solids II, Int. J. Engng. Sci., 2, 389–404, 1964.

    Eringen, A. C., Theory of micropolar fluids, J. Math. Mech., 16, 1-18, 1966.

    Eringen, A. C., Theory of micropolar elasticity, in: Fracture: An advanced treatise, 2, Mathematical fundamentals, Ed.: Liebowitz, H., Academic Press, New York and London.,1968.

    Eringen, A. C., Microcontinuum Field Theories, I: Foundations and Solids, Springer, New York, Berlin, Heidelberg, 1999.

    Green , A. E. and Rivlin, R. S., Directors and multipolar displacements in continuum mechanics , Int. J. Engng. Sci., 2, 611-620, 1965.

    Günther, W., Zur Statik und Kinematik des Cosserat-Kontinuums, Abh. Ges. Wiss. Göttingen, 10, 195–213, 1958.

    Gauthier, R. D. and Jahsman, W. E. , A quest for micropolar elastic constants, J. Appl. Mech., 42, 369–374, 1975.

    Hildebrand, Francis B., Advanced Calculus for Applications, Prentice-Hall, Englewood Cliffs, N.J., 2nd ed., 1976.

    Horgan, C.O. and Chan, A.M., Torsion of functionally graded isotropic linearly elastic bars, J. Elasticity, 52, 181-199, 1999.

    Ieşan, D., Torsion of micropolar elastic beams, Int. J. Engng. Sci., 9, 1047-1060, 1971.

    Ieşan, D., Torsion of Anisotropic Elastic Cylinders, ZAMM-Z. Angew. Math. Mech., 54, 73-779, 1974.

    Ieşan, D., Torsion of anisotropic micropolar elastic cylinders, ZAMM-Z. Angew. Math. Mech., 54, 773-779, 1974.

    Ieşan, D., Saint-Venant's Problem for inhomogeneous and anisotropic elastic bodies, J. Elasticity, 6, 277–294, 1976

    Ieşan, D. and Chirita, S., Saint-Venant’s problem for composite micropolar elastic cylinders, Int. J. Engng. Sci., 17, 573-586, 1979.

    Ieşan, D., On the Saint-Venant’s problem, Arch. Rat. Mech. Anal., 91, 363-373, 1986.

    Ieşan, D., Classical and Generalized Models of Elastic Rods, Chapman& Hall/CRC Press, London, New York, Boca Raton, 2009.

    Ieşan, D., Torsion of chiral Cosserat elastic rods, Eur. J. Mech. A: Solids., 19, 990-997, 2010.

    Joumaa, H. and Ostoja-Starzewski, M., Stress and couple-stress invariance in non-centrosymmetric micropolar planar elasticity, Proc. R. Soc. A., 2011.

    Krishna Reddy, G. V. and Venkatasubramanian, N. K., Saint-Venant’s problems for a micropolar elastic circular cylinder, Int. J. Engng. Sci., 14, 1047-1055, 1976.

    Korepanov, V. V., M.A. Kulesh, V. P. Matveenko, and I. N. Shardakov, Analytical and numerical solutions for static and dynamic problems of the asymmetric theory of elasticity, Phys. Mesomech., 10, 281-293, 2007.

    Korepanov, V. V., Matveenko, V. P. and Shardakov, I. N., Numerical study of two-dimensional problems of nonsymmetric elasticity, Mechanics of Solids, 43, 218-224, 2008.

    Lakes, R. S. and Benedict, R.L., Noncentrosymmetry in micropolar elasticity, Int. J. Engng. Sci., 29, 1161-1167, 1982.

    Lakes, R. S., Elastic and viscoelastic behaviour of chiral materials, Int. J. Mech. Sci., 43, 1579-1589, 2001.

    Lipton, R., Optimal fiber configurations for maximum torsional rigidity, Arch. Ration. Mech. Anal., 144, 79–106, 1998.

    Mansfield, E. H., Neutral holes in plane stress-reinforced holes which are elastically equivalent to the uncut sheet, Q. J. Mech. Appl. Math., VI, 370-378, 1953.

    Mindlin, R. D., Microstructure in linear elasticity, Arch. Rat. Mech. Anal., 16, 51-78,1964.

    Nowacki, W., Theory of Asymmetric Elasticity, Polish Scientific Publishers, Warsaw, 1986.

    Podio-Guidugli, P., Saint-Venant formulae for generalized Saint-Venant problems, Arch. Rat. Mech. Anal., 81, 13-20, 1983.
    Taliercio, A., Torsion of micropolar hollow circular cylinders, Mech. Res. Commun., 37, 406-411, 2010.

    Toupin, R. A., Elastic Materials with Couple-Stresses, Arch. Rat. Mech. Anal., 11,385-414, 1962.

    Toupin, R. A., Theories of elasticity with couple-stress, Arch. Rat. Mech. Anal., 17, 85-112, 1964.

    Truesdell, C., The rational mechanics of materials:past, present, future, Appl. Mech. Rev., 12, 75-80,1959.

    Usidus, C. and Sokolovski, M., Torsion of cylindrical shafts made of micropolar material, Bull. Acad. Polon. Sci., Ser Techn., 21, 19–23, 1973.

    Voigt, W. , Theoretische Studien über die Elasticitätaverhältnisse der Krystalle, Abh. Ges. Wiss. Göttingen, 34, 100, 1887.

    Vardoulakis, I. Cosserat Continuum Mechanics, 1. 3rd, National Meeting on Generalized Continuum Theories and Applications, 2009.

    下載圖示 校內:2014-08-14公開
    校外:2014-08-14公開
    QR CODE