| 研究生: |
吳文偉 Wu, Wen-Wei |
|---|---|
| 論文名稱: |
應用三維定位器與機器人於下顎骨重建手術導引之研究 A study on mandible reconstruction surgical guidance using a 3D locator and a robot |
| 指導教授: |
蔡明俊
Tsai, Ming-June |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 185 |
| 中文關鍵詞: | 機器視覺 、機器人校正 、下顎骨重建 、光學定位器 、手術導引 |
| 外文關鍵詞: | machine vision, robot calibration, Mandible reconstruction, 3D optical locator, Surgery guiding |
| 相關次數: | 點閱:139 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究致力於開發一套下顎骨重建手術系統(Computer Assistance Mandible Reconstruction System)底下簡稱CAMRS。CAMRS系統整合一套光學式掃描與運動擷取統合為一的三維定位器以及一四軸導引機器人,透過軟體整合,當腓骨在手術中取出後可立即掃描建立腓骨數位模型。根據醫師術前規劃切除部位的幾何特徵形狀進行腓骨切塊的規劃。再以四軸機器人導引面型雷射光照射在預計切塊的位置及方向上,由醫師使用無菌筆在腓骨上畫出切割線。畫出切口位置後,由醫師用骨鋸將腓骨切塊,使切塊的腓骨可拼成欲重建的下顎骨形狀,使切出的腓骨塊可拼成欲重建的下顎骨外緣形狀,且拼接面平整、縮短癒合時間。
本文使用Denavit-Hartenberg(D&H)參數來建立機器人系統運動學模型,並推導順向以及逆向運動學。同時針對四軸導引機器人各軸設計不同的校正方法,透過三維定位器量測四軸導引機器人各軸之空間位置。並且透過校正實驗得到各軸校正結果,計算四軸導引機器人之機構參數(Denavit-Hartenberg參數),根據校正結果得到之機構參數控制導引機器人。同時我們規劃數個導引切割位置,並且由運動學模型求解關節資訊來控制導引機器人至切割位置,由三維定位器追蹤導引位置並且分析導引誤差。最後本文亦設計一最佳化Denavit-Hartenberg(D&H)參數方法,由理想導引切割位置以及導引實驗的結果並透過Nonlinear Least Squares-Levenberg-Marquardt algorithm來求得最佳Denavit-Hartenberg(D&H)參數。最後透過程式整合EPCIO運動控制卡以及三維定位器,來完成各軸之自動化校正流程並且優化Denavit-Hartenberg(D&H)參數,同時將三維定位器與四軸導引機器人註冊。最後進行系統模擬驗證實驗,由光學座標系統下規劃切割的腓骨位置轉換至機器人座標系統下,由逆向運動學求解關節資訊,透過EPCIO運動控制卡控制機器人導引雷射面照射在切割位置。
The purpose of this study is to develop a mandible reconstruction surgery system CAMRS (Computer Assistance Mandible Reconstruction System). CAMRS system includes a dual mode scanning/motion capturing optical 3D locator, a 4-axes laser guiding robot, and a software system for surgical planning. The system first imports a defected mandible STL model. Doctors then locate the boundaries of nidus. And the CAMRS can automatically decide optimal cutting planes to reconstruct the mandible shape. Upon receiving the parameter of the cutting planes, the robot would guide laser plane to project on fibula.
Doctor can draw cutting location using a surgical making pen according to the laser line that project by the robot. Doctors can then use handy saw to cut the fibula precisely. In this way, the reconstructed mandible by fibula bone segments will be smoothly fit together that will reduce the re-habilitation time. The study establish a 4-axes laser guiding robot kinematic model by using Denavit-Hartenberg (D&H) parameter and computed the forward and inverse kinematics of the 4-axes laser guiding robot. We also derived a novel calibration method using the 3D locator and computed axes calibration result by machine vision technology. After calibration, D&H parameters of the robot are obtained without tedious measurement. An optimal set of D&H parameters is also obtained using the Nonlinear Least Squares-Levenberg-
Marquardt algorithm. All the calibration processes for each axis are fully automated, and are presented in this study. Once the calibration finished, program will compute Denavit-Hartenberg (D&H) parameter and the robotic coordinate and optical coordinates are also registered together automatically. Upon receiving the fibula cutting positions, we can solve the joint angles to control the robot via the inverse kinematic, to guide the laser plane.
This paper establishes a fully automatic method to calibrate the D&H parameters for 4-axes robot without assumption of knowing the joint axes direction of the robot. This will save much time on the installation of the robot. In additions, the registration process between robot and 3D locator are also automated.
[1] E. Chee, T. S. Ahmad, and E. Ng, “Fibula osteocutaneous flap for mandible reconstruction after ameloblastoma resection: amending technique to reduce ischaemic time,” Malaysian Orthopaedic Journal, Vol. 1, pp. 39-41, 2007.
[2] M. Yoshimura, K. Shimamura, Y. Iwai, S. Yamauchi, and T. Ueno, “Free vascularized fibular transplant. A new method for monitoring circulation of the grafted fibula,” The Journal of Bone and Joint Surgery, Vol. 65, pp. 1295-1301, 1983.
[3] A. F. S. Flemming, M. D. Brough, N. D. Evans, H. R. Grant, M. Harris, D. R. James, M. Lawlor, and I. M. Laws, “Mandibular reconstruction using vascularised fibula,” British Journal of Plastic Surgery, Vol. 43, pp. 403-409, 1990.
[4] D. A. Hidalgo, “Aesthetic improvements in free-flap mandible reconstruction,” Plastic and Reconstructive Surgery, Vol. 88, pp. 574-585, 1991.
[5] D. A. Hidalgo, “Fibula free flap mandibular reconstruction,” Clinics In Plastic Surgery, Vol. 21, pp. 25-35, 1994.
[6] M. Yilmaz, H. Vayvada, A. Menderes, C. Demirdover, and A. Kizilkaya, “A comparison of vascularized fibular flap and iliac crest flap for mandibular reconstruction,” The Journal of Craniofacial Surgery, Vol. 19, pp. 227-234, 2008.
[7] A. J. Lerrick and M. J. Zak, “Oromandibular reconstruction with simultaneous free and pedicled composite flaps,” Operative Techniques In Otolaryngology-Head And Neck Surgery, Vol. 11, pp. 90-101, 2000.
[8] J. S. Chana, Y. M. Chang, F. C. Wei, Y. F. Shen, C. P. Chan, H. N. Lin, C. Y. Tsai, and S. F. Jeng, “Segmental mandibulectomy and immediate free fibula osteoseptocutaneous flap reconstruction with endosteal implants: an ideal treatment method for mandibular ameloblastoma,” Plastic & Reconstructive Surgery, Vol. 113, pp. 80-87, 2004.
[9] W. Hallermann, S. Olsen, T. Bardyn, F. Taghizadeh, A. Banic, and T. Iizuka, “A new method for computer-aided operation planning for extensive mandibular reconstruction,” Plastic and Reconstructive Surgery, Vol. 117, pp. 2431-2437, 2006.
[10] S. Stojadinovic, H. Eufinger, M. Wehmöller, and E. Machtens, “One-step resection and reconstruction of the mandible using computer-aided techniques-experimental and clinical results,” Mund-, Kiefer- und Gesichtschirurgie, Vol. 3, pp. S151-S153, 1999.
[11] R. W. K. Yeung, N. Samman, L. K. Cheung, C. Zhang, and R. L. K. Chow, “Stereomodel-assisted fibula flap harvest and mandibular reconstruction,” Journal of Oral and Maxillofacial Surgery, Vol. 65, pp. 1128-1134, 2007.
[12] C. Marchetti, A. Bianchi, S. Mazzoni, R. Cipriani, and A. Campobassi, “Oromandibular reconstruction using a fibula osteocutaneous free flap: four different "preplating" techniques,” Plastic and Reconstructive Surgery, Vol. 118, pp. 643-651, 2006.
[13] S. S. Kroll and G. P. Reece,“Aesthetically successful mandibular reconstruction with a single reconstruction plate,” Clinics in plastic surgery, Vol. 28, pp. 273-282, 2001.
[14] N. Samman, W. Luck, L. Cheung, H. Tideman, and R. Clark, “Custom-made titanium mandibular reconstruction tray,” Australian dental journal, Vol. 44, pp. 195-199, 1999.
[15] J. Serra, V. Paloma, F. Mesa, and A. Ballesteros, “The vascularized fibula graft in mandibular reconstruction,” Journal of Oral and Maxillofacial Surgery, Vol. 49, pp. 244-250, 1991.
[16] V. Valentini, A. Agrillo, A. Battisti, P. Gennaro, L. Calabrese, and G. Iannetti, “Surgical planning in reconstruction of mandibular defect with fibula free flap: 15 patients,” The Journal of Craniofacial Surgery, Vol.16, pp. 601-607, 2005.
[17] D. Rohner, C. Jaquiéry, C. Kunz, P. Bucher, H. Maas, and B. Hammer, “Maxillofacial reconstruction with prefabricated osseous free flaps: a 3-year experience with 24 patients,” Plastic and Reconstructive Surgery, Vol. 112, pp. 748-757, 2003.
[18] B. T. Kernan, J. A. Wimsatt, “Use of a stereolithography model for accurate, preoperative adaptation of a reconstruction plate,” Journal of Oral and Maxillofacial Surgery, Vol. 58, pp. 349-351, 2000.
[19] S. D. Strackee, F. H. M. Kroon, P. T. J. Spierings, and J. E. N. Jaspers, “Development of a modeling and osteotomy jig system for reconstruction of the mandible with a free vascularized fibula flap,” Plastic and Reconstructive Surgery, Vol. 114, pp. 1851-1858, 2004.
[20] P. Dario and A. Menciassi, “Robotics for surgery,” 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Vol. 1,pp 1813-1814, 2002.
[21] S. Lavallee, J. Troccaz, L. Gaborit, P. Cinquin, A. L. Benabid, and D. Hoffmann, “Image guided operating robot: a clinical application in stereotactic neurosurgery,” IEEE International Conference in Robotics and Automation, Vol.1, pp. 618-624, 1992 .
[22] H. Wörn and J. Mühling, “Computer- and robot-based operation theatre of the future in cranio-facial surgery,” International Congress Series, Vol. 1230, pp. 753-759, 2001.
[23] D. Meister, P. Pokrandt, and A. Both, “Milling accuracy in robot assisted orthopaedic surgery,” 24th Annual Conference of the IEEE in Industrial Electronics Society, Vol.4, pp. 2502-2505, 1998.
[24] D. Engel, J. Raczkowsky, and H. Woern, “Sensor-aided milling with a surgical robot system,” Computer Assisted Radiology and Surgery, pp. 212-217, 2002.
[25] N. Casap, A. Wexler, N. Persky, A. Schneider, and J. Lustmann, “Navigation surgery for dental implants: Assessment of accuracy of the image guided implantology system,” Journal of Oral and Maxillofacial Surgery, Vol. 62, Supplement 2, pp. 116-119, 2004.
[26] F. Watzinger, W. Birkfellner, F. Wanschitz, W. Millesi, C. Schopper, K. Sinko, K. Huber, H. Bergmann, and R. Ewers, “Positioning of dental implants using computer-aided navigation and an optical tracking system: case report and presentation of a new method,” Journal of Cranio-Maxillofacial Surgery, Vol. 27, pp. 77-81, 1999.
[27] W. S. Newman, C. E. Birkhimer, R. J. Horning, and A. T. Wilkey, “Calibration of a Motoman P8 robot based on laser tracking,” IEEE International Conference in Robotics and Automation, Vol.4, pp. 3597-3602, 2000.
[28] G. Alici and B. Shirinzadeh, “Laser interferometry based robot position error modelling for kinematic calibration,” IEEE/RSJ International Conference in Intelligent Robots and Systems, Vol.3, pp. 3588-3593, 2003.
[29] M. Ikits and J. M. Hollerbach, “Kinematic calibration using a plane constraint,” IEEE International Conference in Robotics and Automation, Vol.4, pp. 3191-3196, 1997.
[30] B. W. Mooring and T. J. Pack, “Calibration procedure for an industrial robot,” IEEE International Conference in Robotics and Automation, Vol.2, pp. 786-791, 1988.
[31] R. Y. Tsai and R. K. Lenz, “Real time versatile robotics hand/eye calibration using 3D machine vision,” IEEE International Conference in Robotics and Automation, Vol.1, pp. 554-561, 1988 .
[32] Z. Hanqi, W. Kuanchih, and Z. S. Roth, “Simultaneous calibration of a robot and a hand-mounted camera,” Robotics and Automation, Vol. 11, pp. 649-660, 1995.
[33] J. M. c. S. T. Motta, G. C. de Carvalho, and R. S. McMaster, “Robot calibration using a 3D vision-based measurement system with a single camera,” Robotics and Computer-Integrated Manufacturing, Vol. 17, pp. 487-497, 2001.
[34] Y. Meng and H. Zhuang, “Autonomous robot calibration using vision technology,” Robotics and Computer-Integrated Manufacturing, Vol. 23, pp. 436-446, 2007.
[35] Y. L. Chang and P. Liang, “On recursive calibration of cameras for robot hand-eye systems,” IEEE International Conference in Robotics and Automation, Vol.2, pp. 838-843, 1989.
[36] G. D. Hager, C. Wen-Chung, and A. S. Morse, “Robot feedback control based on stereo vision: towards calibration-free hand-eye coordination,” IEEE International Conference in Robotics and Automation, Vol.4, pp. 2850-2856, 1994.
[37] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning,” In 9th International Conference on Robotics: Science & Systems, 2011.
[38] B. E. Bishop and M. W. Spong, “Adaptive calibration and control of 2D monocular visual servo systems,” Control Engineering Practice, Vol. 7, pp. 423-430, 1999.
[39] S. Lee and Y. Kay, “An accurate estimation of 3-D position and orientation of a moving object for robot stereo vision: Kalman filter approach,” IEEE International Conference in Robotics and Automation, Vol.1, pp. 414-419, 1990.
[40] R. C. Luo, R. E. Mullen, Jr., and D. E. Wessell, “An adaptive robotic tracking system using optical flow,” IEEE International Conference in Robotics and Automation, Vol.1, pp. 568-573, 1988.
[41] V. Micelli, K. Strabala, and S. S. Srinivasa, “Perception and Control Challenges for Effective Human-Robot Handoffs,” Robotics Science and Systems (RSS) conference on, 2011,
[42] L. Sun, J. Liu, W. Sun, S. Wu, and X. Huang, “Geometry-based robot calibration method,” IEEE International Conference in Robotics and Automation, Vol.2, pp. 1907-1912, 2004.
[43] G. Campion, P. Fiorini, and S. Martelli, “Robot calibration using mobile camera,” IEEE International Conference in Robotics and Automation, Vol.1, pp. 141-146, 2002.
[44] A. Watanabe, S. Sakakibara, K. Ban, M. Yamada, G. Shen, and T. Arai, “Autonomous Visual Measurement for Accurate Setting of Workpieces in Robotic Cells,” CIRP Annals - Manufacturing Technology, Vol. 54, pp. 13-18, 2005.
[45] M. R. Driels and U. S. Pathre, “Vision-based automatic theodolite for robot calibration,” Robotics and Automation, Vol. 7, pp. 351-360, 1991.
[46] 謝正一, “應用於下顎骨重建手術之腓骨分段及鋸切導引,” 國立中央大學機械工程研究所,碩士論文, 桃園, 2009.
[47] J. Denavit, and R. S. Hartenberg, “A kinematic notation for lower pair mechanisms based on matrices,” ASME Journal of Applied Mechanics, Vol 22, pp. 215–221, 1955.
[48] K. S. Fu, R. C. Gonzalez and C. S. G. Lee, “Robotics : Control, Sensing, Vision and Intelligence,” McGraw-Hill, New York, 1987.
[49] H. Scharr, “Optimal filters for extended optical flow,” In First International Workshop on Complex Motion, Vol. 3417 of Lect. pp.14-29, 2004.
[50] 許又仁, “應用電腦視覺技術於模具表面幾何特徵辨識之研究,” 國立成功大學機械工程研究所,碩士論文, 台南, 2002.
[51] E. Pennestrì and R. Stefanelli, “Linear Algebra and Numerical Algorithms Using Dual Numbers,” Multibody System Dynamics, Vol. 18, no. 3, pp. 323-344, 2007.
校內:2022-12-20公開