| 研究生: |
洪煌龍 Hung, Huang-Lung |
|---|---|
| 論文名稱: |
資料探勘在社區大樓電信服務市場之應用 Implementing Data Mining in community building for marketing telecommunication services |
| 指導教授: |
王惠嘉
Wang, Hei-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 資料超市 、資料探勘 、電信服務市場 、資料倉儲 |
| 外文關鍵詞: | Data Mart, Data Warehouse, marketing telecommunication, Data Mining |
| 相關次數: | 點閱:102 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我國電信自由化之推動,主要係參考先進國家電信市場開放之經驗,並遵循WTO入會有關電信之承諾,採階段性、漸進式之策略。在民國89年3月審查通過台灣固網、東森寬頻及新世紀資通股份有限公司等三家取得固定通信綜合網路業務特許執照。目前除了中華電信在全省各地有鋪設光纖網路外,其他三家固網業者也都積極在台北、台中、高雄等各地鋪設光纖網路覆蓋在全省有數仟棟以上大樓,並且政府已規劃「全國光纖到戶管道建置計畫」,興建第二管道,提供固網業者承租,建置有線或無線用戶迴路。在不得妨礙用戶選擇不同經營者提供電信服務、不得妨礙不同電信服務經營者爭取用戶之機會的原則下,將來政府務必開放用戶迴路出租給四家新固網業者將造成社區大樓客戶重新分配。因此如何深耕大樓、鞏固社區為目前電信業者亟欲解決之課題。
本研究目的是希望利用固網公司資料超市(data mart)與社區大樓維運服務資料,運用資料探勘技術,建立都會區與非都會區「社區大樓帳務營收流失原因分析比較模型」,提供固網公司在電信市場自由化,面臨其他固網業者強大競爭壓力下,能夠有效區隔都會區與非都會區社區大樓帳務營收逐漸衰退的現象,使電信業者能更正確有效運用資源來進行深耕大樓、鞏固社區的工作。
Our development of deregulation of the telecommunication industry has mainly followed the experience of developed countries, complying with and making gradual implementation of policy based on the requirements for entering the WTO. In March, 1990, three companies including Taiwan Fixed Network, Eastern Broadband Telecom and New Century Info-communication Tech Co., Ltd. were evaluated and permitted to be licensed for business management using telecommunications and the internet. Apart from Chunghwa Telecom that has its own nation-wide fiber network, the other three companies are also constantly setting up fiber networks covering thousands of buildings in Taipei, Taichung, Kaohsiung, and so on. In addition, the government has also designed and organized a nation-wide fiber project to subscriber pipe building plans including installing secondary pipes, applying carrier fees to rent, and build line or wireless subscriber line. Under agreements for not intruding on the individual freedom of choosing different companies and services and for the service-providers, not intruding on the equal opportunity for gaining customers, one day the government will have to open the last mile for the four new carriers, and this will cause the rearrangements and reconstructions of community services. Therefore, how to maintain the major customers but at the same time not loosing smaller communities has become the central problem which needs to be solved as soon as possible by the telecommunication carriers.
The purpose of this research is hoping that through tht use of the data mart, community building maintainance service data combined with the skills, and techniques of data mining, to form a metropolis and a non- metropolis area “community building billing income loss causal analysis“, we will then be able to open our telecommunication market, and by through the pressures of strong competition, efficiently separate between the causes of a metropolis and a non-metropolis area community building’s billing gradual loss of profits, to enabling the carriers to more correctly effect the use of resources to study the causes of profit loss and provide better services.
中文參考文獻
王信惠(民92)。資料探勘在目標行銷應用之個案研究—以電信客戶為例。私立大葉大學資訊管理研究所。
交通部(民91年)。交通政策白皮書:電信。交通部。
李岳貞(民86)。客戶為導向的經營策略。通信雜誌,41,50-54。
沈肇基、張慶賀(民90年)。淺談資料倉儲。資訊與教育雜誌,84,2-9。
周武榮(民86年)。公寓大廈住戶之實用權益。台北市:永然出版公司。
邱義堂(民89年)。通信資料庫之資料探勘:客戶流失預測之研究。國立中山大學資訊管理研究所。
張肇家(民91年)。企業客戶採用IP-VPN/MPLS 網路意願與行銷策略之研究。國立交通大學經營管理研究所。
張勳騰(民88年)。資料探勘在通信資料庫上目標行銷的運用。國立成功大學資訊管理研究所。
郭文建、陳麗州、莊淑慧、張光耀(民91年)。資料挖掘技術簡介與應用。電信研究雙月刊。32-6,719-728。
陳世運(民90年4月1 日)。電信服務市場趨勢探索—國內電信產業風雲再起。資策會FIND。
陳蓉慧(民92年)。全方位資料倉儲為企業決策加分。通訊雜誌,111,33-37。
溫豐文(民86年)。公寓大廈管理問題之研究。行政院研究發展考核委員會編。
趙明哲(民90年)。寬頻接取網路之發展。電信訓練園地,32,1-7。
戴東雄(民73年)。論建築物區分所有權之理論基礎(Ⅱ)。法學叢刊,115。
顏淑琴(民86)。電信業者階段性的任務。通信雜誌,41,71-79。
英文參考文獻
Agrawal, R. & Srikant, R. (1994). Fast algorithms for mining association rules, Proceedings of 1994 international Conference on Very Large Data Bases. Santiage, Chile, 484-499.
Agrawal, R., Imielinski, T. & Swami, A. (1993). Mining association rules between sets of items in large databases. SIGMOD, 207-216.
Agrawal, R., Lin, K., Sawhney, H. S. & Shim, K. (1995). Fast similarity search in the presence of noise, scaling and translation in time-series databases, proceeding of the 21st international conference on very large data bases. Zurich, Switzerland.
Baragoin, C., Andersen, C. M., Bayerl, S., Bent, G., Lee, J. & Schommer, C. (2001). Mining your own business in telecoms using DB2 intelligent miner for data. IBM International Technical Support Organization.
Berry, M. J. A. & Linoff, G. S. (1997). Data Mining Techniques : For Marketing Sale and Customer support. John Wiley & Sons, Incorporation, Canada.
Berry, M. J. A. & Linoff, G. S. (2000). Master data Mining, the art & science of customer relationship management. John Wiley & Sons, Incorporation, Canada.
Berson, A., Smith, S., & Thearling, K. (2000). Building data mining applications for CRM. McGraw-Hill.
Breiman, L., Friendman, J., Olshen, R. & Stone, C. (1984). Classification & regression tree. Wadsworth International Group.
Christopher, M., Payne, A. & Ballantyne, D. (1991). Relationship Marketing. London: Butterworth Heinemann.
Daskalaki, S., kopanas, I., Goudara, M. & Avouris, N. (2003). Data mining for decision support on customer insolvency in telecommunications business. European Journal of Operational Research, 145, 239-255.
Fayyad, U., Piatetsky-Shapiro, G. & Padhraic, S. (1996). From data mining to knowledge discovery in databases. AI Magazine, 37-54.
Frawley, W. J., Paitets-Shapiro, G. & Matheus, C. J. (1991). Knowledge discovery in databases: An overview, knowledge discovery in databases. California, AAAI/MIT Press, 1-30.
Gray, P. & Watson, H. J. (1998). Decision support in data warehouse. Upper Saddle River, N.J., Prentice Hall.
Gronroos, C. (1995). Relationship marketing: the strategy continuum’, Journal of Marketing Science, 23 (4), 252-254.
Grupe, F. H. & Owrang, M. M. (1995). Database mining discovering new knowledge and cooperative advantage. Information Systems Management, 12(4), 26-31.
Han, J. & Kamber, M. (2000). Data mining:concepts and techniques. Morgan Kaufmann.
Inmon, W. H. (1996). Building the data warehouse. New York: John Wiley & Sons.
Jain, A. K., Murty, M. N. & Flynn, P. J. (1999). Data cluster: A survey. ACM Computer Survery, 31,264-323.
Koch, R. (1997). This edition of the 80/20 principle: The secret of achieving more with less(1st ed.). London: Nicholas Brealey Publishing Limited.
Kodratoffand, Y. & Michalski, R. S. (1990). Machine learning, an artificial intelligence approach. San Mateo, CA: Morgan Kaufmann, 1-3.
Komenar, M. (1997). Electronic marketing. Wiley Computer Publishing, New York, NY.
Laudon, K. C. & Laudon, J. P. (2002). Management information systems:managing the digital firm, 7thed. Prentice Hall.
Lejeune, M. A. (2001). Measuring the impact of data mining on churn management. Internet Research: Electronic Networking Applications and Policy, 11(5), 375-387.
Michalski, R. S. & Tecuci, G. (1994). Machine learning, a multistrategy approach. San Francisco: Morgan kauftnann, 1-4.
Michalski, R. S., Brakto, I. & Kubat, M. (1998). Machine learning and data mining: methods and application. New York: John Wiley & Sons.
Murthy, S. K. (1998). Automatic construction of decision trees from data: A multi-disciplinary survey. Data Mining and Knowledge Discovery, 2, 259-289.
Nono, J. (2001). Maximizing Marketing ROI with customer behavior analysis. http://www.drilling-down.com.
Pyle, D. (1999). Data preparation for data mining, Morgan Kaufmann Publishers.
Roiger, R. J. & Geatz, M. W. (2003). Data mining: a tutorial-bases primer. Pearson Education.
Rosset, S., Neumann, E., Eick, U., Vatnik, N. & Idan, Y. (2002). Customer lifetime value modeling and its use for customer retention planning. (2002, July 02). SIGKDD:Edmonton, Alberta, 332-340.
Storbacka, K., Strandvik, T. & Gronroos, C. (1994). Managing customer relations for profit: the dynamics of relationship quality, International Journal of Service Industry Management, 5, 21-38.
Turban, E., McLean, E. & Wetherbe, J. (2001). Information technology for management: Making connections for strategic advantage. New York: John Wiley & Sons, Incorporation.
Weiss, S. M. & Kulikowski, C. A., (1991). Computer system that learn, Morgan Kaufmann Incorporation.
Widrow, B., Rumelhart, D. E. & Lehr, M. A. (1994). Neural network: Application in industry, business and science. Communication of ACM, 37, 93-105.