簡易檢索 / 詳目顯示

研究生: 葉軒豪
Yeh, Husan-Hao
論文名稱: 空間記憶表現與腦部結構及活化之關聯
The relation between spatial memory performance, brain structures and brain activities
指導教授: 林君昱
Lin, Chun-Yu
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系
Department of Psychology
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 80
中文關鍵詞: 空間記憶認知地圖地圖學習路徑學習
外文關鍵詞: spatial memory, spatial representation, cognitive map, map learning, route learning
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由過去研究已知人類經由獲取空間資訊建構大腦認知地圖(cognitive map)以儲存環境訊息,而腦區海馬迴(hippocampus)在其中便扮演著重要的角色。人類在空間認知、環境探索與學習環境資訊時,主要可透過兩種不同的途徑獲取空間訊息:路徑式學習(route learning)與地圖式學習(map learning)。過去研究也指出較常使用空間認路機制的個體海馬迴的灰質體積較大,而神經活化相關研究則發現根據學習的方式不同,空間記憶提取時活化的腦區不盡相同。但目前較少研究討論空間資訊提取的行為實驗表現優劣與整個大腦神經活化或腦區體積之間是否存在相關,在兩種地圖學習途徑的提取機制也仍不明確。本研究利用方位判斷行為實驗派典,分別以路徑式學習與地圖式學習作為實驗情境,將每位實驗參與者在行為實驗中的表現與其灰質體積以及神經活化進行相關分析。實驗結果發現在路徑學習情境,行為表現與大腦灰質體積在維持心像相關的額葉(frontal lobe)、扣帶迴(cingulate gyrus)或是心像導航(mental navigation)的楔前葉有負相關,而神經活化則與情節記憶相關的下頂葉、中央溝後側及緣上迴等區域有正相關;在地圖學習的情境,灰質體積則與轉化空間資訊與維持空間心像以及回憶環境地標相關的數個腦區有負相關,神經活化部分則與右側角迴、中顳葉等與空間距離相關的腦區有正相關的結果。我們的研究結果提供了不同的學習途徑在提取空間記憶時大腦區域的活化不同,並且理解哪些腦區的活化或體積與實際行為表徵時有相關,提供了空間能力與大腦區域活化關聯的基礎藍圖,未來或可提供探討大腦與空間能力關係的研究一個參考依據。

    Previous studies have shown that cognitive map is an important way for human to understand information about an environment. Also, it has been known hippocampus plays a critical role in forming a cognitive map in previous neuroimaging studies. But less is known about the relation between spatial memory and volume of brain regions or neural representation. Here, we examined the correlations between individual’s behavioral performance in a spatial memory task and the volumes and fMRI activities of brain areas. The results showed different patterns of correlations for gray matter volumes and activations in two map learning conditions. This result might provide evidence for correlations between volumes and activations of brain regions with spatial memory performance.

    摘要 I 誌謝 V 圖目錄 IX 表目錄 X 壹、 緒論 1 1-1 研究動機及目的 1 貳、 文獻回顧及探討 4 2-1 路徑式與地圖式空間學習途徑 4 2-2 空間資訊處理在大腦結構的研究 5 2-3 路徑式與地圖式學習學習在神經機制上的異同 7 2-4 空間認知作業相關文獻 8 2-5 研究目標與假設 14 過去研究未解之問題 14 研究目標 14 研究假設 15 參、 研究方法 18 3-1 實驗受試者 18 3-2 研究設計 19 3-3 實驗材料 19 受試者篩選問卷 20 正式實驗前訓練材料 21 方位判斷作業 26 3-4 實驗儀器與分析方法 29 磁振造影影像取得 29 磁振造影資料分析軟體 29 磁振造影影像資料分析 30 3-5 實驗程序 32 肆、 研究結果 37 4-1 行為實驗結果 37 行為實驗敘述統計 37 地圖學習途徑效果 37 4-2 行為實驗表現與大腦灰質體積的關係 39 4-3 fMRI影像分析 42 認知地圖在大腦活化結果 42 4-4 行為實驗表現與大腦神經活化的關係 45 伍、 討論 49 5-1 研究概述 49 5-2 研究結果討論 50 地圖學習途徑效果 50 行為實驗表現與大腦灰質體積的關係 51 行為實驗表現與大腦神經活化的關係 52 綜合討論 53 5-3 研究限制以及未來建議 54 參考文獻 56 附錄一:成大地點確認問卷 60 附錄二:生活經驗問卷 65 附錄三:MRI安全規範表 74 附錄四:實驗材料-成大地點確認清單 75 附錄五:實驗訓練後訪談表 77 附錄六:實驗策略問卷 78

    中文文獻
    許雅勛(2017)。以行為及fMRI研究探討認知地圖與製圖式地圖之空間記憶提取歷程。國立成功大學心理學系碩士論文,台南市。

    英文文獻
    Acheson, D. J., & Hagoort, P. (2013). Stimulating the brain's language network: syntactic ambiguity resolution after TMS to the inferior frontal gyrus and middle temporal gyrus. J Cogn Neurosci, 25(10), 1664-1677. doi:10.1162/jocn_a_00430
    Boccia, M., Guariglia, C., Sabatini, U., & Nemmi, F. (2016). Navigating toward a novel environment from a route or survey perspective: neural correlates and context-dependent connectivity. Brain Struct Funct, 221(4), 2005-2021. doi:10.1007/s00429-015-1021-z
    Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G., & Zijdenbos, A. P. (2007). Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. J Neurosci, 27(38), 10078-10083. doi:10.1523/JNEUROSCI.1763-07.2007
    Chen, Y., Monaco, S., Byrne, P., Yan, X., Henriques, D. Y. P., & Crawford, J. D. (2014). Allocentric versus Egocentric Representation of Remembered Reach Targets in Human Cortex. Journal of Neuroscience, 34(37), 12515-12526. doi:10.1523/jneurosci.1445-14.2014
    Ekstrom, A. D. (2015). Why vision is important to how we navigate. Hippocampus, 25(6), 731-735. doi:10.1002/hipo.22449
    Filimon, F. (2015). Are All Spatial Reference Frames Egocentric? Reinterpreting Evidence for Allocentric, Object-Centered, or World-Centered Reference Frames. Front Hum Neurosci, 9, 648. doi:10.3389/fnhum.2015.00648
    Ghaem, O., Mellet, E., Crivello, F., Tzourio, N., Mazoyer, B., Berthoz, A., & Denis, M. (1997). Mental navigation along memorized routes activates the hippocampus, precuneus, and insula. Neuroreport, 8(3), 739-744. doi:10.1097/00001756-199702100-00032
    Hirnstein, M., Bayer, U., Ellison, A., & Hausmann, M. (2011). TMS over the left angular gyrus impairs the ability to discriminate left from right. Neuropsychologia, 49(1), 29-33. doi:10.1016/j.neuropsychologia.2010.10.028
    Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G., & Moscovitch, M. (2012). Brain regions involved in the retrieval of spatial and episodic details associated with a familiar environment: an fMRI study. Neuropsychologia, 50(13), 3094-3106. doi:10.1016/j.neuropsychologia.2012.08.008
    Howard, L. R., Javadi, A. H., Yu, Y., Mill, R. D., Morrison, L. C., Knight, R., . . . Spiers, H. J. (2014). The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Curr Biol, 24(12), 1331-1340. doi:10.1016/j.cub.2014.05.001
    Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A, 97(8), 4398-4403. doi:10.1073/pnas.070039597
    Maguire, E. A., Spiers, H. J., Good, C. D., Hartley, T., Frackowiak, R. S., & Burgess, N. (2003). Navigation expertise and the human hippocampus: a structural brain imaging analysis. Hippocampus, 13(2), 250-259. doi:10.1002/hipo.10087
    Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus, 16(12), 1091-1101. doi:10.1002/hipo.20233
    Mellet, E., Briscogne, S., Tzourio-Mazoyer, N., Ghaem, O., Petit, L., Zago, L., . . . Denis, M. (2000). Neural correlates of topographic mental exploration: the impact of route versus survey perspective learning. Neuroimage, 12(5), 588-600. doi:10.1006/nimg.2000.0648
    O'Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Exp Neurol, 51(1), 78-109. doi:10.1016/0014-4886(76)90055-8
    O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res, 34(1), 171-175. doi:10.1016/0006-8993(71)90358-1
    O'keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map: Oxford: Clarendon Press.
    Pai, M. C., Lee, C. C., Yang, Y. C., Lee, Y. T., Chen, K. C., Lin, S. H., . . . Cheng, P. J. (2012). Development of a questionnaire on everyday navigational ability to assess topographical disorientation in Alzheimer's disease. Am J Alzheimers Dis Other Demen, 27(1), 65-72. doi:10.1177/1533317512436805
    Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-axis specialization of the human hippocampus. Trends Cogn Sci, 17(5), 230-240. doi:10.1016/j.tics.2013.03.005
    Schinazi, V. R., Nardi, D., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus, 23(6), 515-528. doi:10.1002/hipo.22111
    Seghier, M. L. (2013). The angular gyrus: multiple functions and multiple subdivisions. Neuroscientist, 19(1), 43-61. doi:10.1177/1073858412440596
    Shelton, A. L., & Gabrieli, J. D. (2002). Neural correlates of encoding space from route and survey perspectives. J Neurosci, 22(7), 2711-2717. doi:20026230
    Siegel, A. W., & White, S. H. (1975). The development of spatial representations of large-scale environments. Adv Child Dev Behav, 10, 9-55.
    Smith, M. L., & Milner, B. (1981). The role of the right hippocampus in the recall of spatial location. Neuropsychologia, 19(6), 781-793. doi:10.1016/0028-3932(81)90090-7
    Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci, 21(3), 489-510. doi:10.1162/jocn.2008.21029
    Svoboda, E., McKinnon, M. C., & Levine, B. (2006). The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia, 44(12), 2189-2208. doi:10.1016/j.neuropsychologia.2006.05.023
    Tolman, E. C. (1948). Cognitive maps in rats and men. Psychol Rev, 55(4), 189-208.
    Uddin, L. Q., Supekar, K., Amin, H., Rykhlevskaia, E., Nguyen, D. A., Greicius, M. D., & Menon, V. (2010). Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex, 20(11), 2636-2646. doi:10.1093/cercor/bhq011
    Woollett, K., & Maguire, E. A. (2011). Acquiring "the Knowledge" of London's layout drives structural brain changes. Curr Biol, 21(24), 2109-2114. doi:10.1016/j.cub.2011.11.018
    Zhang, H., Copara, M., & Ekstrom, A. D. (2012). Differential recruitment of brain networks following route and cartographic map learning of spatial environments. PLOS ONE, 7(9), e44886. doi:10.1371/journal.pone.0044886
    Zhang, H., & Ekstrom, A. (2013). Human neural systems underlying rigid and flexible forms of allocentric spatial representation. Hum Brain Mapp, 34(5), 1070-1087. doi:10.1002/hbm.21494
    Zhang, H., Zherdeva, K., & Ekstrom, A. D. (2014). Different "routes" to a cognitive map: dissociable forms of spatial knowledge derived from route and cartographic map learning. Mem Cognit, 42(7), 1106-1117. doi:10.3758/s13421-014-0418-x

    無法下載圖示 校內:2024-11-06公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE