| 研究生: |
王紹芸 Wang, Shao-yun |
|---|---|
| 論文名稱: |
核磁共振技術量測CaAl2-xSi2+x之電子結構 NMR probe of electronic structures in CaAl2-xSi2+x |
| 指導教授: |
呂欽山
Lue, Chin-shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 39 |
| 中文關鍵詞: | 半金屬 |
| 外文關鍵詞: | semimetallic |
| 相關次數: | 點閱:68 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ca-Al-Si三元素可組成兩種不同的混合物CaAlSi和CaAl2Si2,皆具有層狀結構。MgB2是著名的高溫超導,超導溫度39K,CaAlSi和MgB2具有相同結構,同樣具有超導溫度7.8K,所以引起注意。而另一個由Ca-Al-Si三元素組成的化合物為CaAl2Si2,失去超導性質,呈現出半金屬特性。能帶結構計算CaAl2Si2也顯示出在費米面附近出現贗位能。我們藉著NMR的量測,分析隨著不同程度CaAl2-xSi2+x的摻雜,在贗位能上的電子態密度會如何改變。藉著奈特位移(Knight Shift K)和自旋晶格鬆弛時間(spin-lattice relaxation time T1)在77K~300K間的量測結果,我們推得費米面上有能隙的分裂,和理論能帶計算的結果相符。
The ternary Ca-Al-Si systems have two kinds of compound with characteristic layered structure. CaAlSi is a superconductor with transition temperature (Tc) of about 7.8K which is isostructural to MgB2 of high Tc about 39K. The other kind of Ca-Al-Si compound is CaAl2Si2, which shows no superconducting behavior but semimetallic characteristics. Band structure calculation on CaAl2Si2 also resolved a pseudogap in the vicinity of Fermi-level. In this study we examine the electronic states in the pseudogap region of CaAl2-xSi2+x by means of the nuclear magnetic resonance (NMR) spectroscopy. The quadrupole splitting, Knight Shift, and spin-lattice relaxation time ( T1 ) for CaAl2-xSi2+x have been measured between 77K and 300K. We connect these observations to the energy splitting near the Fermi energy, and compare the band-filling behavior to a recent band-structure calculation.
(1)J. Nagamastu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimtsu, Nature (London) 410, 63 (2001).
(2)M. Imai, E. Abe, J. Ye, K. Nishida, T. Kimura, K. Honma, H. Abe, and H. Kitazawa, Phys. Rev. Lett. 87, 077003 (2001).
(3)Motoharu Imai, Kenji Nishida, Takashi Kimura, and Hideki Abe, Appl. Phys. Lett. 80, 1019 (2002).
(4)B. Lorenz, J. Lenzi,J Cmaidalka, R. L. Meng, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Physica C 383, 191 (2002).
(5)M. Imai, H. Abe, and K. Yamada, Inorg. Chem. 43, 5186 (2004).
(6)G. Q. Huang, M. Liu, L. F. Chen, and D. Y. Xing, J. Phys.: Condense. Matter 17, 7151 (2005).
(7)M. Weinert and R. E. Watson, Phys. Rev. B 58, 9732 (1998).
(8)Charles Kittel, Introduction to solid state physics, 8th (2005).
(9)W. W. Simmons, W. J. O’Sullivan, and W. A. Robinson, Phys. Rev. 127, 1168 (1962).
(10)W. H. Jones, Jr., T. P. Graham, and R. G. Barnes, Phys. Rev. 132, 1898 (1963).
(11)C. P. Slicher, Principles of Magnetic Resonance, Springer-Verlag, New York, (1990).
(12)J. Korringa, physca 16, 601 (1950).
(13)N. Bloembergen, Physica 20, 1130 (1954); Dieter Wolf, Spin Temperature and Nuclear-spin Relaxation in Matter (Clarendon, Oxford, 1979).
(14)C. S. Lue and Joseph H. Ross, Phys. Rev. B 57, 7010 (1998).
(15) C. S. Lue , B. X. Xie, S. N. Horng, J. H. Su, and J. Y. Lin, Phys. Rev. B 71, 195104 (2005).
(16) C. S. Lue, J. Y. Lin, and B. X. Xie, Phys. Rev. B 73, 035125 (2006).
(17)C. S. Lue, B. X. Xie, and C. P. Fang, Phys. Rev. B 74, 014505 (2006).
(18)G. C. Carter, I. D. Weisman, L. H. Bennett, and R. E. Watson, Phys. Rev. B 5, 3621 (1972).
(19)C. S. Lue, A nuclear magnetic resonance probe of Fe-V-Al intermetallics, dissertation doctor of philosophy, Texas A&M University.