簡易檢索 / 詳目顯示

研究生: 鄒友智
Tsou, Yo-Chih
論文名稱: 低溫製備鍺式二氧化鋯鉿鰭式電晶體之鐵電 特性研究
Investigation of Interfacial Layers on Ferroelectric HfZrOx Germanium FinFETs with Low Temperature Process
指導教授: 王永和
Wang, Yeong-Her
洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 81
中文關鍵詞: 鐵電材料二氧化鋯鉿微波退火鰭式電晶體
外文關鍵詞: Germanium, ferroelectric material, HfZrOx, microwave anneal, FinFET
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討鍺基板上形成不同的介面層(氧化鍺及三氧化二鋁)使用不同的退火條件,對氧化層鐵電材料二氧化鋯鉿的影響。再結晶退火方面,比起一般的快速熱退火,微波退火不僅可以在較低溫的條件下就顯現較佳的鐵電特性,也能夠抑制閘極漏電流的產生。在不同的介面層上,當介面為三氧化二鋁,二氧化鋯鉿表現為順電極化特性,而在氧化鍺上表現為鐵電特性。在氧化鍺上的鐵電電容經微波退火後,剩餘極化為25.2 (μC/cm2), 矯頑力為1.52 (V). 在n型鰭式電晶體中,次臨界擺幅為75 (mV/dec),開關電流比為 3.8ⅹ105。在p型鰭式電晶體中,次臨界擺幅為83mV/dec,開關電流比為 1.3ⅹ105。

    In the thesis, we investigate of Germanium ferroelectric HfZrOx FinFETs on two interfacial layers (GeOx and Al2O3) by various annealing conditions. In the annealing conditions, microwave not only shows better ferroelectric effect but also suppresses gate leakage. When HZO on Al2O3 shows paraelectric behavior, HZO on GeOx depicts ferroelectric behavior. For HZO on GeOx MOS with microwave annealing, remanent polarization is 25.2 (μC/cm2), coercive force is 1.52 (V).For Ge n-FinFETs, the S.S. is could be suppressed to 75 (mV/dec), Ion/Ioff for 3.8ⅹ105. In the Ge p-FinFETs, S.S. is 83 mV/dec and Ion/Ioff is 1.3ⅹ105.

    摘要 I Abstract II Acknowledgement III Contents IV Figure Captions VI Table Captions VIII Chapter 1 Introduction 1 1.1 Background 1 1.1.1 3D:Multi-gate and FinFETs structure device 3 1.1.2 Ferroelectric material properties 6 1.1.3 Microwave Annealing 10 1.2 Motivation 12 1.3 Organization of the thesis 14 Chapter 2 Experimental and Equipment 15 2.1 Introduction 15 2.2 Capacitor Fabrication 15 2.3 Device Fabrication 17 2.4 Fabrication equipment 22 2.4.1 Rapid thermal annealing 22 2.4.2 Microwave annealing 22 2.4.3 Atomic layer deposition 23 2.4.4 Sputter 23 2.4.5 Electron-beam lithography 24 2.4.6 Dry etching 24 2.5 Material analysis equipment 29 2.5.1 X-ray photoelectron spectroscopy (XPS) 29 2.5.2 X-ray diffraction (XRD) 29 2.5.3 Atomic force microscope (AFM) 30 2.5.4 Transmission electron microscope (TEM) 30 2.6 Electrical measurement equipment 33 2.6.1 Current and capacitance-voltage measurement 33 2.6.2 Polarization-voltage measurement 33 2.7 Parameters extraction methods 35 2.7.1 Threshold voltage (Vth) 35 2.7.2 Transconductance (Gm) 36 2.7.3 Subthreshold swing (S.S.) 37 2.7.4 Effective mobility ("μ" eff) 38 Chapter 3 40 3.1 Introduction 40 3.2 XPS analyses of HZO films 40 3.2.1 Chemical compositional analysis 40 3.2.2 XPS depth profile of HZO film on GeOx 41 3.3 XRD analysis of HZO films 44 3.4 AFM analysis of HZO films 45 3.5 TEM images of MOSCAP and FinFET 48 3.6 Simulation of HZO film 50 3.7 Electrical characteristic of Ge HZO MOSCAPs 52 3.8 Electrical characteristic of Ge HZO FinFETs 58 3.8.1 Different high-k dielectric materials 58 3.8.2 Different Interfacial Layer 60 3.8.3 Electrical characteristic of Ge HZO CMOS 62 Chapter 4 Conclusions and Future Prospects 73 4.1 Conclusions 73 4.2 Future Prospects 74 References 75

    [1] K. J. Kuhn, “Moore's Law Past 32nm: Future Challenges in Device Scaling,” 13th International Workshop on Computational Electronics, pp. 1-6, 2009.
    [2] D. A. Neamen, “Semiconductor Physics and Devices: Basic Principles 4th Edition,” McGraw-Hill Higher Education, 2013.
    [3] M. Bohr, and K. Mistry, “Intel’s Revolutionary 22 nm Transistor Technology,” Intel website, 2011.
    [4] Y. Song, Q. Xu, J. Luo, H. Zhou, J. Niu, Q. Liang, and C. Zhao, “Performance Breakthrough in Gate-All-Around Nanowire N- and P-Type MOSFETs Fabricated on Bulk Silicon Substrate,” IEEE Trans. Electron Devices., vol. 59, no. 7, pp. 1885-1890, July. 2012.
    [5] H. Adhikari, H. R. Harris, C. E. Smith, J-W Yang, B. Coss, S. Parthasarathy, B-Y Nguyen, P. Patruno, T. Krishnamohan, I. Cayrefourcq, P. Majhi, and R. Jammy, “High Mobility SiGe Shell-Si Core Omega Gate PFETS,” International Symposium on VLSI Technology, pp. 136-138, July. 2009.
    [6] X. Huang, W-C Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y-K Choi, K. Asano, V. Subramanian, T-J King, J. Bokor, and C. Hu, “Sub-50 nm P-Channel FinFET,” IEEE Trans. Electron Devices, vol. 48, no. 5, pp. 880-886, May. 2001.
    [7] M. Masahara, T. Matsukawa, K. Ishii, Y. Liu, K. Sakamoto, S. Kanemaru, and E. Suzuki, “Si Nanoprocess for Vertical Double-Gate MOSFET Fabrication,” International Microprocesses and Nanotechnology Conference, pp.118-119, February. 2002.
    [8] K. J. Kuhn, “Considerations for Ultimate CMOS Scaling,” IEEE Trans. Electron Devices., vol. 59, no. 7, pp. 1813-1828, July. 2012.
    [9] M. Veshala, R. Jatooth, and K. R. Reddy, “Reduction of Short-Channel Effects in FinFET,” International Journal of Engineering and Innovative Technology, vol. 2, no. 9, pp. 118-124, March. 2013.
    [10] 李愷信, 陳旻政, 林昌賢, and 魏耘捷, “低於60毫伏特次臨界擺幅之負電容效應鰭式場效電晶體,”國家奈米元件實驗室奈米通訊, vol. 23, no. 2, pp.34-37, June. 2016.
    [11] A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, and S. Salahuddin, “Negative Capacitance in a Ferroelectric Capacitor,” Nature Mater., vol. 14, pp. 182-186, February. 2015.
    [12] K. M Rabe, C. H Ahn, and J-M Triscone, “Physics of Ferroelectrics: A Modern Perspective,” Springer, 2007.
    [13] J. Guyonnet, “Ferroelectric Domain Walls,” Springer, 2014.
    [14] J. Narayan, and O. W. Holland, “Rapid Thermal Annealing of Ion‐implanted Semiconductors,” J. Appl. Phys., Vol. 56, no. 10, June. 1998.
    [15] Y.-J. Lee, T.-C. Cho, P.-J. Sung, K.-H. Kao, F.-K. Hsueh, F.-J. Hou, P.-C. Chen, H.-C. Chen, C.-T. Wu, S.-H. Hsu, Y.-J. Chen, Y.-M. Huang, Y.-F. Hou, W.-H. Huang, C.-C. Yang, B.-Y. Chen, K.-L. Lin, M.-C. Chen, C.-H. Shen, G.-W. Huang, K.-P. Huang, M. I. Current, Y. Li, S. Samukawa, W.-F. Wu, J.-M. Shieh, T.-S. Chao, and W.-K. Yeh, “High Performance Poly Si Junctionless Transistors with Sub-5nm Conformally Doped Layers by Molecular Monolayer Doping and Microwave Incorporating CO2 laser Annealing for 3D Stacked ICs Applications,” 2015 IEEE International Electron Devices Meeting, pp. 6.2.1-6.2.4, 2015.
    [16] 蔡博安, 陳政耀, 賴瓊惠, 羅志偉, and李耀仁, “低溫微波退火應用於高介電薄膜/金屬閘極元件之研究,”國家奈米元件實驗室奈米通訊, vol. 20, no. 3, pp. 14-19, September. 2013.
    [17] Y.-J. Lee, Y.-L. Lu, F.-K. Hsueh, K.-C. Huang, C.-C. Wan, T.-Y. Cheng, M.-H. Han, J. M. Kowalski, J. E. Kowalski, D. Heh, H.-T. Chuang, Y. Li, T.-S. Chao, C.-Y. Wu, and F.-L. Yang, “3D 65nm CMOS with 320°C Microwave Dopant Activation,” 2009 IEEE International Electron Devices Meeting, pp. 1-4, 2009.
    [18] Y.-J. Lee, S.-S. Chuang, C.-I. Liu, F.-K. Hsueh, P.-J. Sung, H.-C. Chen, C.-T. Wu, K.-L. Lin, J.-Y. Yao, Y.-L. Shen, M.-L. Kuo, C.-H. Yang, G.-L. Luo, H.-W. Chen, C.-H. Lai, M. I. Current, C.-Y. Wu, Y.-M. Wan, T.-Y. Tseng, C. Hu, and F.-L. Yang, “Full Low Temperature Microwave Processed Ge CMOS Achieving Diffusion-Less Junction and Ultrathin 7.5nm Ni Mono-Germanide,” 2012 International Electron Devices Meeting, pp. 23.3.1-23.3.4, 2012.
    [19] Y-J Lee, T.-C. Cho, S.-S. Chuang, F.-K. Hsueh, Y.-L. Lu, P.-J. Sung, H.-C. Chen, M. I. Current, T.-Y. Tseng, T.-S. Chao, C. Hu, and F.-L. Yang, “Low-Temperature Microwave Annealing Processes for Future IC Fabrication,” 2014 IEEE International Nanoelectronics Conference, pp. 1-4, 2014.
    [20] Y.-J. Lee1, T.-C. Cho, K.-H. Kao, P.-J. Sung, F.-K. Hsueh, P.-C. Huang, C.-T. Wu, S.-H. Hsu, W. -H. Huang, H.-C. Chen, Y. Li, M. I. Current, B. Hengstebeck, J. Marino, T. Büyüklimanli, J.-M. Shieh, T.-S. Chao, W.-F. Wu, and W.-K. Yeh, “A Novel Junctionless FinFET Structure with Sub-5nm Shell Doping Profile by Molecular Monolayer Doping and Microwave Annealing,” 2014 IEEE International Electron Devices Meeting, pp. 32.7.1-32.7.4, 2014.
    [21] F.-K. Hsueh, Y.-J. Lee, K.-L. Lin, M. I. Current, C.-Y. Wu, and T.-S. Chao, “Amorphous-Layer Regrowth and Activation of P and As Implanted Si by Low-Temperature Microwave Annealing,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 2088-2093, 2014.
    [22] J. M. Kowalski, and J. E. Kowalski, “Microwave Annealing for Low Temperature Activation of As in Si,” 2007 15th International Conference on Advanced Thermal Processing of Semiconductors, pp. 51-56, 2007.
    [23] D. Kuzum, T. Krishnamohan, A. Nainani, Y. Sun, P. A. Pianetta, H. S-. P. Wong, and K. C. Saraswat, “Experimental Demonstration of High Mobility Ge NMOS,” 2009 IEEE International Electron Devices Meeting, pp.1-4. 2009.
    [24] M. J. Biercuk, D. J. Monsma, and C. M. MarcusJ. S. Becker, and R. G. Gordon, “Low-Temperature tomic-Layer-Deposition Lift-Off Method for Microelectronic and Nanoelectronic Applications,” Appl. Phys. Lett, vol. 83, no. 12, September. 2003.
    [25] C.-H. Tsai, C.-W. Yang, C.-H. Hsu, C.-M. Lai, K.-Y, Lo, C.-G. Chen, R.-M. Huang, C.-T. Tsai, L.-S. Hung, J.-W. You, W.-H. Hung, T.-F. Chen, O. Cheng, J.-Y. Wu, S.-F. Tzou, C.-W. Liang, and I.-C. Chen, “Characteristics of HfZrOx Gate Stack Engineering for Reliability Improvement on 28nm HK/MG CMOS Technology,” Proceedings of Technical Program of 2012 VLSI Technology, System and Application, pp. 1-2, 2012.
    [26] T. S. Böscke, P. Y. Hung, P. D. Kirsch, M. A. Quevedo-Lopez, and R. Ramírez-Bon, Increasing Permittivity in HfZrO Thin Films by Surface Manipulation,” Appl. Phys. Lett., vol. 95, no. 5, pp. 052904, August. 2009.
    [27] A. Chernikova, M. Kozodaev, A. Markeev, D. Negrov, M. Spiridonov, S. Zarubin, O. Bak, P. Buragohain, H. Lu, E. Suvorova, A. Gruverman, and A. Zenkevich,“Ultrathin Hf0.5Zr0.5O2 Ferroelectric Films on Si,” Appl. Mater. Interfaces, vol. 8, no. 11, pp. 7232-7237, March. 2016.
    [28] K. Endo, S. Noda, M. Masahara, T. Kubota, T. Ozaki2 , Seiji Samukawa, Y. Liu, K. Ishii, Y. Ishikawa, E. Sugimata, T. Matsukawa, H. Takashima, H. Yamauchi, and E. Suzuki, “Damage-Free Neutral Beam Etching Technology for High Mobility FinFETs,” Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pp. 840-843, 2005.
    [29] X. Zhang, L. Chen, Q.-Q. Sun, L.-H. Wang, P. Zhou, H.-L. Lu, P.-F. Wang, S.-J. Ding, and D. W. Zhang, “Inductive Crystallization Effect of Atomic-Layer Deposited Hf0.5Zr0.5O2 Films for Ferroelectric Application,” Nanoscale Res Lett., December. 2015
    [30] J. Müller, T. S. Bö scke, U. Schrö der, S. Mueller, D. Brauhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., vol. 12, no. 8, pp. 4318-4323, July. 2012.
    [31] Y. Liu, S. Kijima, E. Sugimata, M. Masahara, K. Endo, T. Matsukawa, K. Ishii, K. Sakamoto, T. Sekigawa, H. Yamauchi, Y. Takanashi, and Eiichi Suzuki, “Investigation of the TiN Gate Electrode with Tunable Work Function and Its Application for FinFET Fabrication,” IEEE Trans. Nanotechnol., vol. 5, no. 6, November. 2006.
    [32] K. Endo, S.-I. O’uchi, Y. Ishikawa, Y. Liu, T. Matsukawa, K. Sakamoto, J. Tsukada, H. Yamauchi, and M. Masahara, “Variability Analysis of TiN Metal-Gate FinFETs,” IEEE Electron Device Lett., vol. 31, no. 6, June. 2010.
    [33] T. L. Alford, D. C. Thompson, J. W. Mayer, and N. D. Theodore, “Dopant Activation in Ion Implanted Silicon by Microwave Annealing,” J. Appl. Phys. Lett., vol. 106, no. 11, pp. 114902, October. 2009.
    [34] K. Terada, K. Nishiyama, and K.-I. Hatanaka, “Comparison of MOSFET-Threshold-Voltage Extraction Methods,” Solid-State Electron., vol. 45, no. 1, pp. 35-40, January. 2001.
    [35] J. A. Salcedo, A. Ortiz-Conde, F. J. García Sánchez, J. Muci, J. J. Liou, and Y. Yue, “New Approach for Defining the Threshold Voltage of MOSFETs,” IEEE Trans. Electron Devices, vol. 48, no. 4, pp-809-813, April. 2001.
    [36] M. Tsuno, M. Suga, M. Tanaka, K. Shibahara, M. Miura-Mattausch, and M. Hirose, “Physically-Based Threshold Voltage Determination for MOSFET’s of All Gate Lengths,” IEEE Trans. Electron Devices, vol. 46, no. 7, pp. 1429-1434, July. 1999.
    [37] A. Ortiz-Conde, F.J.Garcı́a Sánchez, J.J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, “A Review of Recent MOSFET Threshold Voltage Extraction Methods,” Microelectronics Reliability, vol. 42, no. 4, pp.583-596, April. 2002.
    [38] Q. Chen, B. Agrawal, and J. D. Meindl, “A Comprehensive Analytical Subthreshold Swing (S) Model for Double-Gate MOSFETs,” IEEE Trans. Electron Devices, vol. 49, no. 6, pp. 1086-1090, June. 2002.
    [39] J. Zhang, J. Trommer, W. M. Weber, P.-E. Gaillardon, and G. D. Micheli, “On Temperature Dependency of Steep Subthreshold Slope in Dual-Independent-Gate FinFET,” J. Electron. Devi, vol. 3, no. 6, pp. 452-456, November. 2015.
    [40] S. M. Sze, and K. K. Ng, “Physics of Semiconductor Devices 3rd Edition,” wily, 2007.
    [41] S.M. Thomas, T.E. Whall, E.H.C. Parker, D.R. Leadley, R.J.P. Lander, G. Vellianitis, and J.R. Watling, “Improved Effective Mobility Extraction in MOSFETs,” Solid-State Electron., vol. 45, no. 1, pp. 1252-1256, December. 2009.
    [42] D.D.Sarma, and C.N.R.Rao, “XPES Studies of Oxides of Second- and Third-Row Transition Metals Including Rare Earths,” J. Electron. Spectrosc. Relat. Phenom., vol. 20, no. 1, pp. 25-45, December. 1980.
    [43] T. S. Böscke, J. Müller, D. Bräuhaus,U. Schröder, and U. Böttger, “Ferroelectricity in Hafnium Oxide: CMOS compatible Ferroelectric Field Effect Transistors,” Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 24.5.1 - 24.5.4, December. 2011.
    [44] M. Kobayashi, and T. Hiramoto, “On Device Design for Steep-Slope Negative-Capacitance Field-Effect-Transistor Operating at Sub-0.2V Supply Voltage with Ferroelectric HfO2 Thin Film,” AIP Advances, vol. 6, no. 2, 025113, February. 2016.
    [45] T. Nishimura, L. Xu, S. Shibayama, T. Yajima, S. Migita, and A. Toriumi, “Ferroelectricity of Nondoped Thin HfO2 Films in TiN/HfO2/TiN Stacks,” Jpn. J. Appl. Phys., vol. 55, no. 8S2, June. 2016.
    [46] Y. Q. Chen, X. J. Zheng, L. He, and X. Feng, “Annealing Temperature-Dependent Piezoelectric Properties of Bi3.15Nd0.85Ti3O12 Ferroelectric Thin Films,” Phys. Status Solidi., vol. 207, no. 5, pp.1240-1244, December. 2009.
    [47] Y. Kamata, Y. Kamimuta, T. Ino, R. Iijima, M. Koyama, and A. Nishiyama, “Influences of Activation Annealing on Characteristics of Ge P-MOSFET with ZrO2 Gate Dielectric,” 2004 International Conference on Solid State Devices and Materials,” pp. 856-857, 2004
    [48] L. Witters, J. Mitard, R. Loo, S. Demuynck, S.A. Chew, T. Schram, Z. Tao, A. Hikavyy, J.W. Sun, A. P. Milenin, H. Mertens, C. Vrancken, P. Favia, M. Schaekers, H. Bender, N. Horiguchi, R. Langer, K. Barla, D. Mocuta, N. Collaert, and A.V-Y. Thean, “Strained Germanium Quantum Well P-FinFETs Fabricated on 45nm Fin Pitch Using Replacement Channel, Replacement Metal Gate and Germanide-Free Local Interconnect,” 2015 Symposium on VLSI Technology,” pp. 56-57, 2015.
    [49] L. Witters, J. Mitard, R. Loo, G. Eneman, H. Mertens, D.P. Brunco, S.H. Lee, N. Waldron, A. Hikavyy, P. Favia, A.P. Milenin, Y. Shimura, C. Vrancken, H. Bender, N. Horiguchi, K. Barla, A. Thean, and N. Collaert, “Strained Germanium Quantum Well PMOS FinFETs Fabricated on In-Situ Phosphorus-Doped SiGe Strain Relaxed Buffer Layers Using a Replacement Fin Process,” 2013 IEEE International Electron Devices Meeting, pp. 534-537, 2013.
    [50] M. H. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, M.-H. Liao, C.-A. Jong, K.-S. Li, M.-C. Chen, and C. W. Liu, “Physical Thickness 1.x nm Ferroelectric HfZrOx Negative Capacitance FETs,” 2016 IEEE International Electron Devices Meeting, pp. 306-319, 2016
    [51] J. Zhou, G. Han, Q. Li, Y. Peng, X. Lu, C. Zhang, J. Zhang, Q.-Q. Sun, D. W. Zhang, and Y. Hao, “Ferroelectric HfZrOx Ge and GeSn PMOSFETs with Sub-60 mV/decade Subthreshold Swing, Negligible Hysteresis, and Improved IDS,” 2016 IEEE International Electron Devices Meeting, pp. 310-313, 2016
    [52] A. Chernikova, M. Kozodaev, A. Markeev, D. Negrov, M. Spiridonov, S. Zarubin, O. Bak, P. Buragohain, H. Lu, E. Suvorova, A. Gruverman, and A. Zenkevich, “Ultrathin Hf0.5Zr0.5O2 Ferroelectric Films on Si,” ACS Appl. Mater. Interfaces., vol. 8, no. 11, pp. 7232-7237, March. 2016.
    [53] C. Auth, A. Cappellani, J.-S. Chun, A. Dalis, A. Davis, T. Ghani, G. Glass, T. Glassman, M. Harper, M. Hattendorf, P. Hentges, S. Jaloviar, S. Joshi, J. Klaus, K. Kuhn, D. Lavric, M. Lu, H. Mariappan, K. Mistry, B. Norris, N. Rahhal-orabi, P. Ranade, J. Sandford, L. Shifren, V. Souw, K. Tone, F. Tambwe, A. Thompson, D. Towner, T. Troeger, P. Vandervoorn, C. Wallace, J. Wiedemer, and C. Wiegand, “45nm High-k + Metal Gate Strain-Enhanced CMOS Transistors,” 2008 Symposium on VLSI Technology, pp. 17-19, June. 2008.
    [54] T. Yamaguchi, T. Tomimatsu, T. Yamashita, K. Maekawa, and M. Fujisawa, “Investigation of Implantation Damage Recovery Using Microwave System for Defect-Less p-n junction,” 2014 International Workshop on Junction Technology, pp. 1-4, June. 2014.
    [55] C.-C. Li, K.-S. Chang-Liao, L.-J. Liu, T.-M. Lee, C.-H. Fu, T.-C. Chen, J.-W. Cheng, C.-C. Lu, and T.-K Wang, “Improved Electrical Characteristics of Ge MOS Devices With High Oxidation State in HfGeOx Interfacial Layer Formed by In-Situ Desorption, IEEE Electron Device Lett., vol. 35, no. 5, May. 2014.
    [56] Q. Xie, S. Deng, M. Schaekers, D. Lin, M. Caymax, A. Delabie, Y. Jiang, X. Qu, D. Deduytsche, and C. Detavernier, “High-Performance Ge MOS Capacitors by O2 Plasma Passivation and O2 Ambient Annealing,” IEEE Electron Device Lett., vol. 32, no. 12, October. 2011.
    [57] L. Liu, M. Zhao, R. Liang, J. Wang, and J. Xu, “Demonstration of Germanium NMOSFETs with Interface Passivation of Ozone Pre-Gate Treatment and Ozone Ambient Annealing,”2014 International Symposium on Next-Generation Electronics, pp. 1-2, June. 2014.
    [58] C.-J. Su, Y.-T Tang, Y.-C. Tsou, P.-J. Sung, F.-J. Hou, C.-J. Wang, S.-T. Chung, C.-Y. Hsieh, Y.-S. Yeh, F.-K. Hsueh, K.-H. Kao, S.-S. Chuang, C.-T. Wu, T.-Y. You, Y.-L. Jian, T.-H. Chou, Y.-L. Shen, B.-Y. Chen, G.-L. Luo, T.-C. Hong, K.-P. Huang, M.-C. Chen, Y.-J. Lee, T.-S. Chao, T.-Y. Tseng, W.-F. Wu, G.-W. Huang, J.-M. Shieh, W.-K. Yeh, and Y.-H. Wang, “Nano-scaled Ge FinFETs with Low Temperature Ferroelectric HfZrOx on Specific Interfacial Layers Exhibiting 65% S.S. Reduction and Improved ION,” 2017 Symposium on VLSI Technology, pp. T152-T153. 2017.
    [59] C.-H. Fu, K.-S. Chang-Liao, L.-J. Liu, C.-C. Li, T.-C. Chen, J.-W. Cheng, and C.-C. Lu, “An Ultralow EOT Ge MOS Device with Tetragonal HfO2 and High Quality HfxGeyO Interfacial Layer,” IEEE Trans. Electron Devices., vol. 61, no. 8, pp. 2662-2667. August. 2014.
    [60] H. Wang, J. Zhu, X. W. Zhang, Y. X. Tang, and H. S. Luo, “Domain Structure of Adaptive Orthorhombic Phase in [110]-Pb(Mg1/3Nb2/3)O3-30.5%PbTiO3 Poled Single Crystal,” Appl. Phys. Lett., vol. 92, no. 13, pp. 132906, March. 2008.

    無法下載圖示 校內:2022-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE