簡易檢索 / 詳目顯示

研究生: 劉應玄
Liu, Ying-Xuan
論文名稱: 咪唑及4-咪唑甲酸在二氧化鈦粉末表面上的吸附與反應
Adsorption and Reactions of Imidazole and 4-Imidazolecarboxylic Acid on Powdered TiO2
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 107
中文關鍵詞: 傅立葉轉換紅外光譜二氧化鈦咪唑4-咪唑甲酸光催化密度泛函理論
外文關鍵詞: Fourier-Transform Infrared Spectroscopy, TiO2, Imidazole, 4-Imidazolecarboxylic acid, Photocatalysis, Density Functional Theory
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文利用傅立葉轉換紅外光譜(FTIR)與密度泛函理論計算,研究咪唑(C3N2H4)與4-咪唑甲酸(C3N2H3-COOH)在TiO2表面上的吸附結構,以及熱與光反應。探討這些分子與TiO2表面的作用,進而推導熱與光反應的路徑。
    吸附計算顯示咪唑分子主要是以N原子和表面Ti原子進行鍵結,咪唑環的結構改變不大。在真空與無氧的反應系統中,低於200 ℃,此分子穩定吸附在表面,升高溫度後,吸附分子從表面脫離,沒有發生分解。有氧氣存在下,高於250 ℃,雜環開始分解,產生NCO(ad)、HCOO(ad)、CO2(g)、NH3(ad)。咪唑/TiO2於真空中照射325 nm紫外光後,在表面上產生環破裂後所形成的中間物,可能帶有共軛的C=C、C=N物種。於有氧情況下照光,由於表面上的中間物進一步被氧化分解,多了NCO(ad)、H2O(ad)、HCOO(ad)、CO2(g)、含C=O物種的生成。
    4-咪唑甲酸於~35 ℃的TiO2上有兩種吸附型式: 完整的分子及斷OH基後形成的4-咪唑甲酸根。Rutile(110)的理論吸附計算顯示4-咪唑甲酸可以C=O的氧原子和環上的N與表面Ti離子作用,而4-咪唑甲酸根則是以COO和N接近表面Ti離子。分解性吸附的4-咪唑甲酸比完整吸附的分子穩定,能量差是~12.2 kcal mol-1。提高TiO2的溫度可促進4-咪唑甲酸的去質子化,高於200 ℃,4-咪唑甲酸根的分解產生了CO2(g)和咪唑分子。O2存在下,4-咪唑甲酸/TiO2於約高於250 ℃反應而生成NCO(ad)、HCOO(ad)、CO2(g)、NH3(ad)。4-咪唑甲酸/TiO2受325 nm光照可能引起開環的反應。

    In this research, Fourier-transform infrared spectroscopy has been employed to study the adsorption and reactions of imidazole and 4-imidazolecarboxylic Acid on powdered TiO2. Imidazole is chemisorbed on TiO2 surface at 35 ℃ via its pyridine-type nitrogen atom. In vacuum, desorption of the surface imidazole occurs above ~200 ℃, without decomposition. However in O2, the imidazole reacts to form NCO(ad),HCOO(ad),CO2(g) and NH3(ad) at a temperature higher than ~200 ℃. With the light exposure at 325 nm, the aromatic ring of the imidazole on TiO2 may break, forming intermediates with conjugated C=N and C=C. In the presence of oxygen, other reaction products of NCO(ad),H2O(ad), HCOO(ad), CO2(g) and C=O containing species are generated from the photocatalytic decomposition of imidazole/TiO2.
    At 35 ℃, 4-imidazole carboxylic acid can be molecularly and dissociatively adsorbed
    On the TiO2 surface. The dissociative adsorption of the 4-imidazole carboxylic acid occurs by the OH bond cleavage, forming 4-imidazole carboxylate. The theoretical adsorption study on rutile(110) shows that 4-imidazole carboxylic acid is adsorbed on the surface via the interaction of the oxygen of C=O and the N in the aromatic ring with surface Ti ions. The 4-imidazole carboxylate is adsorbed via the COO and the N. Raising the surface temperature would promote the deprotonation of 4-imidazole carboxylic acid. Above ~200 ℃, the decomposition of 4-imidazolecarboxylate generates CO2 and imidazole. In the presence of O2, reaction of 4-imidazole carboxylic acid on TiO2 produces NCO(ad), HCOO(ad), CO2 and NH3 at a temperature higher than 250 ℃. Under photoirradiation at 325 nm, 4-imidazole carboxylic acid may dissociates via the breakage of the aromatic ring.

    第一章 緒論 1 1.1 表面科學 1 1.1.1表面定義 2 1.1.2表面催化 2 1.1.3表面吸附與脫附 4 1.2 光催化 6 1.2.1 TiO2光催化起源 6 1.2.2 TiO2光催化原理 6 1.2.3 TiO2光催化修飾 7 1.3二氧化鈦(TiO2) 9 1.3.1 晶體結構 9 1.3.2 表面 10 1.4 研究動機 13 1.4.1結構 13 1.4.2 咪唑的研究回顧 13 第二章 實驗系統與方法 22 2.1 實驗系統概述 22 2.1.1 儀器 23 2.1.2 藥品 23 2.2 真空系統 24 2.2.1 壓力計 24 2.3 傅立葉轉換紅外光譜系統 25 2.3.1 紅外光源 25 2.3.2 偵測器 25 2.4 紅外光譜反應槽 26 2.5 二氧化鈦/鎢網(TiO2/W)的製備 27 2.5.1 TiO2/W的製備 27 2.5.2 TiO2/W的擺放位向 27 2.5.3 TiO2/W的前處理 28 2.6 紫外光源 28 2.7 藥品的前處理 29 2.8 理論計算模型 29 2.8.1 Material Studio DMol3 29 第三章 結果與討論 31 3.1 咪唑在TiO2表面上的吸附與反應 31 3.1.1 咪唑在TiO2表面上的吸附 31 3.1.2 真空環境下咪唑在表面TiO2上的熱反應 40 3.1.3 密閉環境下咪唑在二氧化鈦粉末表面上的熱反應 43 3.1.4 密閉環境下咪唑在二氧化鈦粉末表面上的光反應 51 3.2 4-咪唑甲酸在TiO2表面上的反應 63 3.2.1 4-咪唑甲酸在TiO2表面上的吸附 63 3.2.2 真空環境下4-咪唑甲酸在表面TiO2上的熱反應 74 3.2.3 密閉環境下4-咪唑甲酸在二氧化鈦粉末表面上的熱反應 81 3.2.4 密閉系統中4-咪唑甲酸在二氧化鈦粉末表面上的光反應 86 第四章 結論 91 第五章 參考文獻 93 附錄 100

    [1] Mertens, J., Oil on Troubled Waters: Benjamin Franklin and The Honor of Dutch Seamen. Physics. Today 2006, 59, 36-41.
    [2] Zecchina, A.; Califano, S., The Development of Catalysis: A History of Key Processes and Personas in Catalytic Science and Technology. John Wiley & Sons: 2017.
    [3] Robertson, A. J. B., The Early History of Catalysis. Platinum Metals Rev., 1975, 19, (2), 64
    [4] Piumetti, M., A Brief History of The Science of Catalysis-I: From the early concepts to single-site heterogeneous catalysts Chimica Oggi-Chemistry Today 2014, 32, 6.
    [5] Appl, M., Ammonia, 2. Production Processes. Ullmann's Encyclopedia of Industrial Chemistry, 2000.
    [6] Smil, V., Enriching the Earth: Fritz Haber, Carl Bosch, and The Transformation of World Food Production. MIT Press: 2004.
    [7] Langmuir, I., Surface Chemistry. Chem. Rev. 1933, 13, 147-191.
    [8] Ertl, G., Reactions at Surfaces: From Atoms to Complexity (Nobel lecture). Angewandte Chemie International Edition 2008, 47 , 3524-3535.
    [9] Vickerman, J. C.; Gilmore, I. S., Surface Analysis: The Principal Techniques, 2 nd Edition. John Wiley & Sons: 2011.
    [10] Fujishima, A.; Honda, K, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 37, 238.
    [11] Linsebigler, A. L. L., G.;Yates, J. T. , Photocatalysis on Ti02 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735-758.
    [12] Zhang, J.; Zhou, P.; Liu, J.; Yu, J., New Understanding of The Difference of Photocatalytic Activity among Anatase, Rutile and Brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382-6.
    [13] Kang, X.,Liu, S.,Dai, Z.,He, Y.,Song, X.,Tan, Z., Titanium Dioxide: From Engineering to Applications. Catalysts. 2019, 16, 191
    [14] Khan, H., Berk, D., Characterization and Mechanistic Study of Mo+6 and V+5 Codoped TiO2 as a Photocatalyst. J. Photochem. Photobiol. A. 2014, 294, 96–109.
    [15] Tian, B., Li, C., Gu, F., Jiang, H., Hu, Y., Zhang, J., Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible
    [16] Hachiya, A.; Takata, S.; Komuro, Y.; Matsumoto, Y. Effects of V-ion doping on the photoelectrochemical properties of epitaxial TiO2(110) thin films on Nb-doped TiO2 (110) single crystals. J. Phys. Chem. C 2012, 116, 16951–16956.
    [17] Wang, X.; Yuan, X.; Wang, D.; Dong, W.; Dong, C.; Zhang, Y.; Lin, T.; Huang, F. Tunable synthesis of colorful nitrogen-doped titanium oxide and its application in energy storage. ACS Appl. Energy Mater. 2018, 1, 876.
    [18] Niu, P.; Wu, T.; Wen, L.; Tan, J.; Yang, Y.; Zheng, S.; Liang, Y.; Li, F.; Irvine, J.T.S.; Liu, G.; et al. Substitutional carbon-modified anatase TiO2 decahedral plates directly derived from titanium oxalate crystals via topotactic transition. Adv. Mater.2018, 30, e1705999.
    [19] Zhao, Z., Fan, J., Wang, J., Li, R., Effect of heating temperature on photocatalytic reduction of CO2 by N-TiO2 nanotube catalyst. Catal. Commun. 2012, 21, 32–37.
    [20] Paola, A. D., Ikeda, S., Marcì, G., Ohtani, B., L. Palmisano Transition metal doped TiO2: Physical properties and photocatalytic behaviour. Int. J. Photoenergy 2001, 3, 171.)
    [21] Fujihira, M.; Satoh, Y.; Osa, T. Heterogeneous photocatalytic reactions on semiconductor materials. Ш. effect of pH and Cu2+ ions on the photo-fenton type reaction Bull. Chem. Soc. Jpn. 1982, 55, 666.
    [22] Zhao, X.; Liu, X.; Yu, M.; Wang, C.; Li, J. The highly efficient and stable Cu, Co, Zn-porphyrine TiO2 photocatalysts with heterojunction by using fashioned one-step method. Dyes Pigments 2017, 136, 648–656.
    [23] Herrmann, J.-M.; Disdier, J.; Pichat, P. Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination. Chem. Phys. Lett. 1984, 108, 618.
    [24] Gopidas, K. R.; Bohorquez, M.; Kamat, P. V., Photophysical and Photochemical Aspects of Coupled Semiconductors. Charge-Transfer Processes in Colloidal CdS-TiO2 and CdS-AgI Systems. J. Phys. Chem. 1990, 94, 6435.
    [25] Sato, S., White, J. M., Photodecomposition of water over Pt/TiO2 catalysts. Chem. Phys. Lett. 1980, 72, 83.
    [26] Gopidas, K. R.; Bohorquez, M.; Kamat, P. V., Photophysical and Photochemical Aspects of Coupled Semiconductors. Charge-Transfer Processes in Colloidal CdS-TiO2 and CdS-AgI Systems. J. Phys. Chem. 1990, 94, 6435.
    [27] Yana, Y., Yanga, H., Zhaob, X., Lib, R., Wang, X.,Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater. Res. Bull. 2018, 105, 286–290.
    [28] Lina, L., Huanga, J., Li, X., Abass, M. A. Zhang, S., Effective surface disorder engineering of metal oxide nanocrystals for improved photocatalysis. Appl. Catal. B. 2017, 203, 615–624.
    [29] Mitsuhashi, T., Kleppa, O. J., Transformation Enthalpies of the TiO2 Polymorphs. J. Am. Chem. Soc. 1979, 62, 356.
    [30] Choi, J., Park, H., Hoffmann, M. R., Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2. J. Phys. Chem. C 2010, 114, 2, 783–792.
    [31] Lazzeri, M., Vittadini, A., Selloni, A., Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001, 63, 155409.
    [32] Muscat, J., Swamy, V., Harrison, N. M., First-principles calculations of the phase stability of TiO2 Phys. Rev. B 2002, 65, 224112.
    [33] Landmann, M.; Rauls, E.; Schmidt, W., The Electronic Structure and Optical Response of Rutile, Anatase and Brookite TiO2. J. Phys. Condens. Matter 2012, 24, 195503.
    [34] Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P., Band Alignment of Rutile and Anatase TiO2. Nature Materials 2013, 12, 798.
    [35] Ohno, T., Sarukawa, K., Tokieda, K., Matsumura, M., Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. J. Catal., 2001, 203, 82.
    [36] Mo, S. D.; Ching, W., Electronic and Optical Properties of Three Phases of Titanium Dioxide: Rutile, Anatase, and Brookite. Physical Review B 1995, 51, 13023.
    [37] Augustynski, J., The Role of The Surface Intermediates in The Photoelectrochemical Behaviour of Anatase and Rutile TiO2. Electrochimica. Acta. 1993, 38, 43-46.
    [38] Barnard, A., Curtiss, L., Prediction of TiO2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry. Nano. Letters. 2005, 5, 1261-1266.
    [39] Wu, N., Wang, J., Tafen, D. N., Wang, H., Zheng, J.-G., Lewis, J. P., Liu, X., Leonard, S. S., Manivannan, A., Shape-enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts. Journal of the American Chemical Society 2010, 132, 6679-6685.
    [40] Katritzky; Rees.Comprehensive Heterocyclic Chemistry. 1984, 5, 469.
    [41] Grimmett, M. Ross. midazole and Benzimidazole Synthesis. Academic Press, 1997.
    [42] Brown, E. G.Ring Nitrogen and Key Biomolecules. Kluwer Academic Press, 1998.
    [43] Pozharskii, A. F.,et al.Heterocycles in Life and Society. John Wiley & Sons, 1997.
    [44] L. Gilchrist. Heterocyclic Chemistry. The Bath press. 1985.
    [45] Seki, S., Kobayashi, Y., Miyashiro, H., Ohno, Y., Usami, A., Mita, Y., Kihira, N., Watanabe, M., Terada, N., Lithium Secondary Batteries Using Modified-Imidazolium Room-Temperature Ionic Liquid. J. Phys. Chem. B 2006, 110, 21, 10228–10230.
    [46] da Silva, G., Moore, E. E., Bozzelli, J. W., Quantum Chemical Study of the Structure and Thermochemistry of the Five-Membered Nitrogen-Containing Heterocycles and Their Anions and Radicals, J. Phys. Chem. A 2006, 110, 51, 13979–13988.
    [47] Liu, Y. J., Zhao B. D., Wang, Y. L., Gao F. L., Liu W. X., Chen B., Review on Synthesis and Properties of Energetic Imidazole-bridged Azoles. J. Energ. Mater. 2020, 28, 1120-1130.
    [48] Gutowski, K. E., Rogers, R. D., Dixon, D. A., Accurate Thermochemical Properties for Energetic Materials Applications. II. Heats of Formation of Imidazolium-, 1,2,4-Triazolium-, and Tetrazolium-Based Energetic Salts from Isodesmic and Lattice Energy Calculations. J. Phys. Chem. B 2007, 111, 18, 4788–4800.
    [49] Wang, G. T.;Mui, C.;Tannaci, J. F., Filler, M. A., Musgrave, C. B.;Bent, S. F. Reactions of Cyclic Aliphatic and Aromatic Amines on Ge(100)-2 × 1 and Si(100)-2 × 1 J. Phys. Chem. B 2003,107,4982–4996.
    [50] Kim, D. H.; Choi, D. S.;Kim, A.;Bae, S.-S.;Hong, S.;Kim, S. Chemical Reactions and Adsorption Geometries of Pyrrole on Ge(100) J. Phys. Chem B 2006, 110, 7938– 7943.
    [51] Lee, J. Y.;Jung, S. J.;Hong, S.;Kim, S.Double Dative Bond Configuration: Pyrimidine on Ge(100). J. Phys. Chem. B 2005,109,348–351.
    [52] Bae, S.-S.;Kim, S.;Kim, J. W. Adsorption Configuration Change of Pyridine on Ge(100): Dependence on Exposure Amount. Langmuir 2009, 25, 275– 279.
    [53] Autocatalytic Dissociative Adsorption of Imidazole on the Ge(100)-2 × 1 Surface J. Phys. Chem. C 2017, 121, 20905−20910.
    [54] Johns, I. B., McElhill, E. A., Smith, J. O., Thermal Stability of Some Organic Compounds. J. Chem. Eng. Data 1962, 7, 2, 277–281.
    [55] da Silva, G., Bozzelli, J. W., Retro-[3 + 2]-Cycloaddition Reactions in the Decomposition of Five-Membered Nitrogen-Containing Heterocycles. J. Org. Chem.2008, 73, 4, 1343–1353.
    [56] Nohara, K., Hidaka, H., Pelizzetti, E., Serpone, N., Processes of formation of NH4+ and NO3− ions during the photocatalyzed oxidation of N-containing compounds at the titania/water interface. J. Photochem. Photobiol. A: Chem. 1997, 102, 265.
    [57] Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 1, 69–96)
    [58] Morris, A. S., Langari, R., Chapter 15 - Pressure Measurement. Measurement and Instrumentation. 2012, 397-423
    [59] Rogalski, A., HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 2005, 68, 2267
    [60] Fan, J.; Yates Jr, J. T., Infrared Study of The Oxidation of Hexafluoropropene on TiO2. J. Phys. Chem. 1994, 98, 10621-10627.
    [61] Bezrodnaa, T., Puchkovskaa, G., Shymanovskaa, V., Baranb, J., Ratajczak, H., IR-analysis of H-bonded H2O on the pure TiO2 surface. J. Mol. Struct. 2004, 700, 175–181.
    [62] Yates, D. J. C., Infrared studies of the surface hydroxyl groups on titanium dioxide, and of the chemisorption of carbon monoxide and carbon dioxide J. Phys. Chem. 1961, 65, 5, 746–753.
    [63] Primet, M., Pichat, p., Mathieu, Mathieu, V., Infrared study of the surface of titanium dioxides. I. Hydroxyl groups J. Phys. Chem. 1971, 75, 1216–1220.
    [64] Xue, G., Dong, J., Complex-Induced Activating Effect on Surface Species: Reactions of Imidazole on Zero Oxidation State Metal Surfaces. Langmuir, 1994, 10, 5, 1477–1481.
    [65] Cordes, M., Walter, J. L., Infrared and Raman spectra of heterocyclic compounds—I the infrared studies and normal vibrations of imidazole. Spectrochim. Acta, 1968, 24A, 237.
    [66] Ramasamy, R., Vibrational Spectroscopic Studies of Imidazole. Armen. j. phys, 2015, 8, 1, 51-55.
    [67] Perchard, C., Bellocq, A. M., Novak, A., Low-Temperature Matrix Isolation Study of Hydrogen-Bonded, High-Boiling Organic Compounds. I. The Sampling Device and the Infrared Spectra of Pyrazole, Imidazole, and Dimethyl Phosphinic Acid. J. Phys Chem. 1965, 62, 1344.
    [68] Martin, P. E., Barker, E. F., The Infrared Absorption Spectrum of Carbon Dioxide. Phys. Rev. 1932, 41, 291.
    [69] Liao, L. F.; Wu, W. C.; Chen, C. Y.; Lin, J. L., Photooxidation of Formic Acid vs Formate and Ethanol vs Ethoxy on TiO2 and Effect of Adsorbed Water on The Rates of Formate and Formic Acid Photooxidation. J. Phys. Chem. B 2001, 105, 7678-7685.
    [70] Kwon, S., Lin, T. C., Iglesia, E., Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces. J. Catal. 2020, 383, 60-76
    [71] Piazwsi, G., Kröcher, O., Elsener, M., Wokaun, A., Adsorption and hydrolysis of isocyanic acid on TiO2. Appl. Catal. B 2000, 65, 55.
    [72] Mino, L., Spoto, G., Ferrari, A. M., CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study J. Phys. Chem. C 2014, 118, 25016−25026.
    [73] Liu, L., Zhao, C., Miller, J. T., Li, Y., Mechanistic Study of CO2 Photoreduction with H2O on Cu/TiO2 Nanocomposites by in Situ X‑ray Absorption and Infrared
    Spectroscopies. J. Phys. Chem. C 2017, 121, 1, 490–499.
    [74] Liua, L., Gao, F., Zhaoa, H., Li, Y., Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B-Environ. 2013, 134–135, 349
    [75] Yang, C. C., Yu, Y. H., van der Linden, B., Wu, J. C. S., Mul, G.,
    Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction? J. Am. Chem. Soc.2010, 132, 24, 8398–8406.
    [76] Liao, L. F.; Lien, C. F.; Shieh, D. L.; Chen, M.T.; Lin, J. L., FTIR Study of Adsorption and Photoassisted Oxygen Isotopic Exchange of Carbon Monoxide, Carbon Dioxide, Carbonate, and Formate on TiO2. J. Phys. Chem. B 2002, 106 (43), 11240-11245.
    [77] Chuang, C. C.; Shiu, J. S.; Lin, J. L., Interaction of Hydrazine and Ammonia with TiO2. Phys. Chem. Chem. Phys. 2000, 2, 2629-2633.
    [78] Liao, L. F., Lien, C. F. Lin, J. L. FTIR study of adsorption and photoreactions of acetic acid on TiO2. Phys. Chem. Chem. Phys., 2001, 3, 3831-3837.
    [79] Ryu, J., Choi, W., Substrate-Specific Photocatalytic Activities of TiO2 and Multiactivity Test for Water Treatment Application. Environ. Sci. Technol. 2008, 42, 294-300.
    [80] Herrmann, J. M., Fundamentals and misconceptions in photocatalysis J. Photochem. Photobiol. A: Chem. 2016, 216, 85-93.
    [81] Turchi, C., Ollis, D. F., Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack J. Catal. 1990, 122, 178-192.
    [82] Liao, L. F., Wu, W. C., Chen, C. Y., Lin, J. L., Photooxidation of Formic Acid vs Formate and Ethanol vs Ethoxy on TiO2 acomparativend Effect of Adsorbed Water on the Rates of Formate and Formic Acid Photooxidation. J. Phys. Chem. B 2001, 105, 32, 7678–7685.
    [83] Hadjiivanov, K.; Bushev, V.; Kantcheva, M.; Klissurski, D., Infrared Spectroscopy Study of The Species Arising during Nitrogen Dioxide Adsorption on Titania (Anatase). Langmuir 1994, 10, 464-471.
    [84] Hadjiivanov, K., Knözinger, H., Species formed after NO adsorption and NO+O2 co-adsorption on TiO2: an FTIR spectroscopic study. Phys. Chem. Chem. Phys. 2000, 2, 2803-2806.
    [85] Świderski, G., Wilczewska, A. Z., Świsłocka, R., Kalinowska, M., Lewandowski, W., Spectroscopic (IR, Raman, UV–Vis) study and thermal analysis of 3d-metal complexes with 4-imidazolecarboxylic acid. J. Therm. Anal. Calorim. 2018, 134, 513–525
    [86] Premkumar, T., Govindarajan, S., Pan, W. P., Xie, R., Preparation and thermal behaviour of transition metal complexes of 4, 5-imidazoledicarboxylic acid. J Therm Anal Calorim. 2003, 74(1):325–33.
    [87] Yang, Z. X., Chen, S.-W., Lee, S. H., Chen,T. Y., Lin, J. L., Comparative study on the reaction pathways of 2-chloropropanoic acid on Cu(100) and O/Cu(100). J. Phys. Chem. C 2017, 121, 315–323.
    [88] Chang, F. H., Chen, T. Y., Lee, Chen, S. H., Chen,Y. H., Lin,Y. J., Lin, J. L., Corrosion Inhibition of Copper Particles on ITO with 1,2,4-Triazole-3-carboxylic Acid. Surface and Interfaces, 2018, 10, 162–169.

    無法下載圖示 校內:2026-09-09公開
    校外:2026-09-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE