| 研究生: |
劉應玄 Liu, Ying-Xuan |
|---|---|
| 論文名稱: |
咪唑及4-咪唑甲酸在二氧化鈦粉末表面上的吸附與反應 Adsorption and Reactions of Imidazole and 4-Imidazolecarboxylic Acid on Powdered TiO2 |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 傅立葉轉換紅外光譜 、二氧化鈦 、咪唑 、4-咪唑甲酸 、光催化 、密度泛函理論 |
| 外文關鍵詞: | Fourier-Transform Infrared Spectroscopy, TiO2, Imidazole, 4-Imidazolecarboxylic acid, Photocatalysis, Density Functional Theory |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文利用傅立葉轉換紅外光譜(FTIR)與密度泛函理論計算,研究咪唑(C3N2H4)與4-咪唑甲酸(C3N2H3-COOH)在TiO2表面上的吸附結構,以及熱與光反應。探討這些分子與TiO2表面的作用,進而推導熱與光反應的路徑。
吸附計算顯示咪唑分子主要是以N原子和表面Ti原子進行鍵結,咪唑環的結構改變不大。在真空與無氧的反應系統中,低於200 ℃,此分子穩定吸附在表面,升高溫度後,吸附分子從表面脫離,沒有發生分解。有氧氣存在下,高於250 ℃,雜環開始分解,產生NCO(ad)、HCOO(ad)、CO2(g)、NH3(ad)。咪唑/TiO2於真空中照射325 nm紫外光後,在表面上產生環破裂後所形成的中間物,可能帶有共軛的C=C、C=N物種。於有氧情況下照光,由於表面上的中間物進一步被氧化分解,多了NCO(ad)、H2O(ad)、HCOO(ad)、CO2(g)、含C=O物種的生成。
4-咪唑甲酸於~35 ℃的TiO2上有兩種吸附型式: 完整的分子及斷OH基後形成的4-咪唑甲酸根。Rutile(110)的理論吸附計算顯示4-咪唑甲酸可以C=O的氧原子和環上的N與表面Ti離子作用,而4-咪唑甲酸根則是以COO和N接近表面Ti離子。分解性吸附的4-咪唑甲酸比完整吸附的分子穩定,能量差是~12.2 kcal mol-1。提高TiO2的溫度可促進4-咪唑甲酸的去質子化,高於200 ℃,4-咪唑甲酸根的分解產生了CO2(g)和咪唑分子。O2存在下,4-咪唑甲酸/TiO2於約高於250 ℃反應而生成NCO(ad)、HCOO(ad)、CO2(g)、NH3(ad)。4-咪唑甲酸/TiO2受325 nm光照可能引起開環的反應。
In this research, Fourier-transform infrared spectroscopy has been employed to study the adsorption and reactions of imidazole and 4-imidazolecarboxylic Acid on powdered TiO2. Imidazole is chemisorbed on TiO2 surface at 35 ℃ via its pyridine-type nitrogen atom. In vacuum, desorption of the surface imidazole occurs above ~200 ℃, without decomposition. However in O2, the imidazole reacts to form NCO(ad),HCOO(ad),CO2(g) and NH3(ad) at a temperature higher than ~200 ℃. With the light exposure at 325 nm, the aromatic ring of the imidazole on TiO2 may break, forming intermediates with conjugated C=N and C=C. In the presence of oxygen, other reaction products of NCO(ad),H2O(ad), HCOO(ad), CO2(g) and C=O containing species are generated from the photocatalytic decomposition of imidazole/TiO2.
At 35 ℃, 4-imidazole carboxylic acid can be molecularly and dissociatively adsorbed
On the TiO2 surface. The dissociative adsorption of the 4-imidazole carboxylic acid occurs by the OH bond cleavage, forming 4-imidazole carboxylate. The theoretical adsorption study on rutile(110) shows that 4-imidazole carboxylic acid is adsorbed on the surface via the interaction of the oxygen of C=O and the N in the aromatic ring with surface Ti ions. The 4-imidazole carboxylate is adsorbed via the COO and the N. Raising the surface temperature would promote the deprotonation of 4-imidazole carboxylic acid. Above ~200 ℃, the decomposition of 4-imidazolecarboxylate generates CO2 and imidazole. In the presence of O2, reaction of 4-imidazole carboxylic acid on TiO2 produces NCO(ad), HCOO(ad), CO2 and NH3 at a temperature higher than 250 ℃. Under photoirradiation at 325 nm, 4-imidazole carboxylic acid may dissociates via the breakage of the aromatic ring.
[1] Mertens, J., Oil on Troubled Waters: Benjamin Franklin and The Honor of Dutch Seamen. Physics. Today 2006, 59, 36-41.
[2] Zecchina, A.; Califano, S., The Development of Catalysis: A History of Key Processes and Personas in Catalytic Science and Technology. John Wiley & Sons: 2017.
[3] Robertson, A. J. B., The Early History of Catalysis. Platinum Metals Rev., 1975, 19, (2), 64
[4] Piumetti, M., A Brief History of The Science of Catalysis-I: From the early concepts to single-site heterogeneous catalysts Chimica Oggi-Chemistry Today 2014, 32, 6.
[5] Appl, M., Ammonia, 2. Production Processes. Ullmann's Encyclopedia of Industrial Chemistry, 2000.
[6] Smil, V., Enriching the Earth: Fritz Haber, Carl Bosch, and The Transformation of World Food Production. MIT Press: 2004.
[7] Langmuir, I., Surface Chemistry. Chem. Rev. 1933, 13, 147-191.
[8] Ertl, G., Reactions at Surfaces: From Atoms to Complexity (Nobel lecture). Angewandte Chemie International Edition 2008, 47 , 3524-3535.
[9] Vickerman, J. C.; Gilmore, I. S., Surface Analysis: The Principal Techniques, 2 nd Edition. John Wiley & Sons: 2011.
[10] Fujishima, A.; Honda, K, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 37, 238.
[11] Linsebigler, A. L. L., G.;Yates, J. T. , Photocatalysis on Ti02 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995, 95, 735-758.
[12] Zhang, J.; Zhou, P.; Liu, J.; Yu, J., New Understanding of The Difference of Photocatalytic Activity among Anatase, Rutile and Brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382-6.
[13] Kang, X.,Liu, S.,Dai, Z.,He, Y.,Song, X.,Tan, Z., Titanium Dioxide: From Engineering to Applications. Catalysts. 2019, 16, 191
[14] Khan, H., Berk, D., Characterization and Mechanistic Study of Mo+6 and V+5 Codoped TiO2 as a Photocatalyst. J. Photochem. Photobiol. A. 2014, 294, 96–109.
[15] Tian, B., Li, C., Gu, F., Jiang, H., Hu, Y., Zhang, J., Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible
[16] Hachiya, A.; Takata, S.; Komuro, Y.; Matsumoto, Y. Effects of V-ion doping on the photoelectrochemical properties of epitaxial TiO2(110) thin films on Nb-doped TiO2 (110) single crystals. J. Phys. Chem. C 2012, 116, 16951–16956.
[17] Wang, X.; Yuan, X.; Wang, D.; Dong, W.; Dong, C.; Zhang, Y.; Lin, T.; Huang, F. Tunable synthesis of colorful nitrogen-doped titanium oxide and its application in energy storage. ACS Appl. Energy Mater. 2018, 1, 876.
[18] Niu, P.; Wu, T.; Wen, L.; Tan, J.; Yang, Y.; Zheng, S.; Liang, Y.; Li, F.; Irvine, J.T.S.; Liu, G.; et al. Substitutional carbon-modified anatase TiO2 decahedral plates directly derived from titanium oxalate crystals via topotactic transition. Adv. Mater.2018, 30, e1705999.
[19] Zhao, Z., Fan, J., Wang, J., Li, R., Effect of heating temperature on photocatalytic reduction of CO2 by N-TiO2 nanotube catalyst. Catal. Commun. 2012, 21, 32–37.
[20] Paola, A. D., Ikeda, S., Marcì, G., Ohtani, B., L. Palmisano Transition metal doped TiO2: Physical properties and photocatalytic behaviour. Int. J. Photoenergy 2001, 3, 171.)
[21] Fujihira, M.; Satoh, Y.; Osa, T. Heterogeneous photocatalytic reactions on semiconductor materials. Ш. effect of pH and Cu2+ ions on the photo-fenton type reaction Bull. Chem. Soc. Jpn. 1982, 55, 666.
[22] Zhao, X.; Liu, X.; Yu, M.; Wang, C.; Li, J. The highly efficient and stable Cu, Co, Zn-porphyrine TiO2 photocatalysts with heterojunction by using fashioned one-step method. Dyes Pigments 2017, 136, 648–656.
[23] Herrmann, J.-M.; Disdier, J.; Pichat, P. Effect of chromium doping on the electrical and catalytic properties of powder titania under UV and visible illumination. Chem. Phys. Lett. 1984, 108, 618.
[24] Gopidas, K. R.; Bohorquez, M.; Kamat, P. V., Photophysical and Photochemical Aspects of Coupled Semiconductors. Charge-Transfer Processes in Colloidal CdS-TiO2 and CdS-AgI Systems. J. Phys. Chem. 1990, 94, 6435.
[25] Sato, S., White, J. M., Photodecomposition of water over Pt/TiO2 catalysts. Chem. Phys. Lett. 1980, 72, 83.
[26] Gopidas, K. R.; Bohorquez, M.; Kamat, P. V., Photophysical and Photochemical Aspects of Coupled Semiconductors. Charge-Transfer Processes in Colloidal CdS-TiO2 and CdS-AgI Systems. J. Phys. Chem. 1990, 94, 6435.
[27] Yana, Y., Yanga, H., Zhaob, X., Lib, R., Wang, X.,Enhanced photocatalytic activity of surface disorder-engineered CaTiO3. Mater. Res. Bull. 2018, 105, 286–290.
[28] Lina, L., Huanga, J., Li, X., Abass, M. A. Zhang, S., Effective surface disorder engineering of metal oxide nanocrystals for improved photocatalysis. Appl. Catal. B. 2017, 203, 615–624.
[29] Mitsuhashi, T., Kleppa, O. J., Transformation Enthalpies of the TiO2 Polymorphs. J. Am. Chem. Soc. 1979, 62, 356.
[30] Choi, J., Park, H., Hoffmann, M. R., Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO2. J. Phys. Chem. C 2010, 114, 2, 783–792.
[31] Lazzeri, M., Vittadini, A., Selloni, A., Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B 2001, 63, 155409.
[32] Muscat, J., Swamy, V., Harrison, N. M., First-principles calculations of the phase stability of TiO2 Phys. Rev. B 2002, 65, 224112.
[33] Landmann, M.; Rauls, E.; Schmidt, W., The Electronic Structure and Optical Response of Rutile, Anatase and Brookite TiO2. J. Phys. Condens. Matter 2012, 24, 195503.
[34] Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P., Band Alignment of Rutile and Anatase TiO2. Nature Materials 2013, 12, 798.
[35] Ohno, T., Sarukawa, K., Tokieda, K., Matsumura, M., Morphology of a TiO2 Photocatalyst (Degussa, P-25) Consisting of Anatase and Rutile Crystalline Phases. J. Catal., 2001, 203, 82.
[36] Mo, S. D.; Ching, W., Electronic and Optical Properties of Three Phases of Titanium Dioxide: Rutile, Anatase, and Brookite. Physical Review B 1995, 51, 13023.
[37] Augustynski, J., The Role of The Surface Intermediates in The Photoelectrochemical Behaviour of Anatase and Rutile TiO2. Electrochimica. Acta. 1993, 38, 43-46.
[38] Barnard, A., Curtiss, L., Prediction of TiO2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry. Nano. Letters. 2005, 5, 1261-1266.
[39] Wu, N., Wang, J., Tafen, D. N., Wang, H., Zheng, J.-G., Lewis, J. P., Liu, X., Leonard, S. S., Manivannan, A., Shape-enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts. Journal of the American Chemical Society 2010, 132, 6679-6685.
[40] Katritzky; Rees.Comprehensive Heterocyclic Chemistry. 1984, 5, 469.
[41] Grimmett, M. Ross. midazole and Benzimidazole Synthesis. Academic Press, 1997.
[42] Brown, E. G.Ring Nitrogen and Key Biomolecules. Kluwer Academic Press, 1998.
[43] Pozharskii, A. F.,et al.Heterocycles in Life and Society. John Wiley & Sons, 1997.
[44] L. Gilchrist. Heterocyclic Chemistry. The Bath press. 1985.
[45] Seki, S., Kobayashi, Y., Miyashiro, H., Ohno, Y., Usami, A., Mita, Y., Kihira, N., Watanabe, M., Terada, N., Lithium Secondary Batteries Using Modified-Imidazolium Room-Temperature Ionic Liquid. J. Phys. Chem. B 2006, 110, 21, 10228–10230.
[46] da Silva, G., Moore, E. E., Bozzelli, J. W., Quantum Chemical Study of the Structure and Thermochemistry of the Five-Membered Nitrogen-Containing Heterocycles and Their Anions and Radicals, J. Phys. Chem. A 2006, 110, 51, 13979–13988.
[47] Liu, Y. J., Zhao B. D., Wang, Y. L., Gao F. L., Liu W. X., Chen B., Review on Synthesis and Properties of Energetic Imidazole-bridged Azoles. J. Energ. Mater. 2020, 28, 1120-1130.
[48] Gutowski, K. E., Rogers, R. D., Dixon, D. A., Accurate Thermochemical Properties for Energetic Materials Applications. II. Heats of Formation of Imidazolium-, 1,2,4-Triazolium-, and Tetrazolium-Based Energetic Salts from Isodesmic and Lattice Energy Calculations. J. Phys. Chem. B 2007, 111, 18, 4788–4800.
[49] Wang, G. T.;Mui, C.;Tannaci, J. F., Filler, M. A., Musgrave, C. B.;Bent, S. F. Reactions of Cyclic Aliphatic and Aromatic Amines on Ge(100)-2 × 1 and Si(100)-2 × 1 J. Phys. Chem. B 2003,107,4982–4996.
[50] Kim, D. H.; Choi, D. S.;Kim, A.;Bae, S.-S.;Hong, S.;Kim, S. Chemical Reactions and Adsorption Geometries of Pyrrole on Ge(100) J. Phys. Chem B 2006, 110, 7938– 7943.
[51] Lee, J. Y.;Jung, S. J.;Hong, S.;Kim, S.Double Dative Bond Configuration: Pyrimidine on Ge(100). J. Phys. Chem. B 2005,109,348–351.
[52] Bae, S.-S.;Kim, S.;Kim, J. W. Adsorption Configuration Change of Pyridine on Ge(100): Dependence on Exposure Amount. Langmuir 2009, 25, 275– 279.
[53] Autocatalytic Dissociative Adsorption of Imidazole on the Ge(100)-2 × 1 Surface J. Phys. Chem. C 2017, 121, 20905−20910.
[54] Johns, I. B., McElhill, E. A., Smith, J. O., Thermal Stability of Some Organic Compounds. J. Chem. Eng. Data 1962, 7, 2, 277–281.
[55] da Silva, G., Bozzelli, J. W., Retro-[3 + 2]-Cycloaddition Reactions in the Decomposition of Five-Membered Nitrogen-Containing Heterocycles. J. Org. Chem.2008, 73, 4, 1343–1353.
[56] Nohara, K., Hidaka, H., Pelizzetti, E., Serpone, N., Processes of formation of NH4+ and NO3− ions during the photocatalyzed oxidation of N-containing compounds at the titania/water interface. J. Photochem. Photobiol. A: Chem. 1997, 102, 265.
[57] Hoffmann, M. R., Martin, S. T., Choi, W., and Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 1, 69–96)
[58] Morris, A. S., Langari, R., Chapter 15 - Pressure Measurement. Measurement and Instrumentation. 2012, 397-423
[59] Rogalski, A., HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 2005, 68, 2267
[60] Fan, J.; Yates Jr, J. T., Infrared Study of The Oxidation of Hexafluoropropene on TiO2. J. Phys. Chem. 1994, 98, 10621-10627.
[61] Bezrodnaa, T., Puchkovskaa, G., Shymanovskaa, V., Baranb, J., Ratajczak, H., IR-analysis of H-bonded H2O on the pure TiO2 surface. J. Mol. Struct. 2004, 700, 175–181.
[62] Yates, D. J. C., Infrared studies of the surface hydroxyl groups on titanium dioxide, and of the chemisorption of carbon monoxide and carbon dioxide J. Phys. Chem. 1961, 65, 5, 746–753.
[63] Primet, M., Pichat, p., Mathieu, Mathieu, V., Infrared study of the surface of titanium dioxides. I. Hydroxyl groups J. Phys. Chem. 1971, 75, 1216–1220.
[64] Xue, G., Dong, J., Complex-Induced Activating Effect on Surface Species: Reactions of Imidazole on Zero Oxidation State Metal Surfaces. Langmuir, 1994, 10, 5, 1477–1481.
[65] Cordes, M., Walter, J. L., Infrared and Raman spectra of heterocyclic compounds—I the infrared studies and normal vibrations of imidazole. Spectrochim. Acta, 1968, 24A, 237.
[66] Ramasamy, R., Vibrational Spectroscopic Studies of Imidazole. Armen. j. phys, 2015, 8, 1, 51-55.
[67] Perchard, C., Bellocq, A. M., Novak, A., Low-Temperature Matrix Isolation Study of Hydrogen-Bonded, High-Boiling Organic Compounds. I. The Sampling Device and the Infrared Spectra of Pyrazole, Imidazole, and Dimethyl Phosphinic Acid. J. Phys Chem. 1965, 62, 1344.
[68] Martin, P. E., Barker, E. F., The Infrared Absorption Spectrum of Carbon Dioxide. Phys. Rev. 1932, 41, 291.
[69] Liao, L. F.; Wu, W. C.; Chen, C. Y.; Lin, J. L., Photooxidation of Formic Acid vs Formate and Ethanol vs Ethoxy on TiO2 and Effect of Adsorbed Water on The Rates of Formate and Formic Acid Photooxidation. J. Phys. Chem. B 2001, 105, 7678-7685.
[70] Kwon, S., Lin, T. C., Iglesia, E., Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces. J. Catal. 2020, 383, 60-76
[71] Piazwsi, G., Kröcher, O., Elsener, M., Wokaun, A., Adsorption and hydrolysis of isocyanic acid on TiO2. Appl. Catal. B 2000, 65, 55.
[72] Mino, L., Spoto, G., Ferrari, A. M., CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study J. Phys. Chem. C 2014, 118, 25016−25026.
[73] Liu, L., Zhao, C., Miller, J. T., Li, Y., Mechanistic Study of CO2 Photoreduction with H2O on Cu/TiO2 Nanocomposites by in Situ X‑ray Absorption and Infrared
Spectroscopies. J. Phys. Chem. C 2017, 121, 1, 490–499.
[74] Liua, L., Gao, F., Zhaoa, H., Li, Y., Tailoring Cu valence and oxygen vacancy in Cu/TiO2 catalysts for enhanced CO2 photoreduction efficiency. Appl. Catal. B-Environ. 2013, 134–135, 349
[75] Yang, C. C., Yu, Y. H., van der Linden, B., Wu, J. C. S., Mul, G.,
Artificial Photosynthesis over Crystalline TiO2-Based Catalysts: Fact or Fiction? J. Am. Chem. Soc.2010, 132, 24, 8398–8406.
[76] Liao, L. F.; Lien, C. F.; Shieh, D. L.; Chen, M.T.; Lin, J. L., FTIR Study of Adsorption and Photoassisted Oxygen Isotopic Exchange of Carbon Monoxide, Carbon Dioxide, Carbonate, and Formate on TiO2. J. Phys. Chem. B 2002, 106 (43), 11240-11245.
[77] Chuang, C. C.; Shiu, J. S.; Lin, J. L., Interaction of Hydrazine and Ammonia with TiO2. Phys. Chem. Chem. Phys. 2000, 2, 2629-2633.
[78] Liao, L. F., Lien, C. F. Lin, J. L. FTIR study of adsorption and photoreactions of acetic acid on TiO2. Phys. Chem. Chem. Phys., 2001, 3, 3831-3837.
[79] Ryu, J., Choi, W., Substrate-Specific Photocatalytic Activities of TiO2 and Multiactivity Test for Water Treatment Application. Environ. Sci. Technol. 2008, 42, 294-300.
[80] Herrmann, J. M., Fundamentals and misconceptions in photocatalysis J. Photochem. Photobiol. A: Chem. 2016, 216, 85-93.
[81] Turchi, C., Ollis, D. F., Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack J. Catal. 1990, 122, 178-192.
[82] Liao, L. F., Wu, W. C., Chen, C. Y., Lin, J. L., Photooxidation of Formic Acid vs Formate and Ethanol vs Ethoxy on TiO2 acomparativend Effect of Adsorbed Water on the Rates of Formate and Formic Acid Photooxidation. J. Phys. Chem. B 2001, 105, 32, 7678–7685.
[83] Hadjiivanov, K.; Bushev, V.; Kantcheva, M.; Klissurski, D., Infrared Spectroscopy Study of The Species Arising during Nitrogen Dioxide Adsorption on Titania (Anatase). Langmuir 1994, 10, 464-471.
[84] Hadjiivanov, K., Knözinger, H., Species formed after NO adsorption and NO+O2 co-adsorption on TiO2: an FTIR spectroscopic study. Phys. Chem. Chem. Phys. 2000, 2, 2803-2806.
[85] Świderski, G., Wilczewska, A. Z., Świsłocka, R., Kalinowska, M., Lewandowski, W., Spectroscopic (IR, Raman, UV–Vis) study and thermal analysis of 3d-metal complexes with 4-imidazolecarboxylic acid. J. Therm. Anal. Calorim. 2018, 134, 513–525
[86] Premkumar, T., Govindarajan, S., Pan, W. P., Xie, R., Preparation and thermal behaviour of transition metal complexes of 4, 5-imidazoledicarboxylic acid. J Therm Anal Calorim. 2003, 74(1):325–33.
[87] Yang, Z. X., Chen, S.-W., Lee, S. H., Chen,T. Y., Lin, J. L., Comparative study on the reaction pathways of 2-chloropropanoic acid on Cu(100) and O/Cu(100). J. Phys. Chem. C 2017, 121, 315–323.
[88] Chang, F. H., Chen, T. Y., Lee, Chen, S. H., Chen,Y. H., Lin,Y. J., Lin, J. L., Corrosion Inhibition of Copper Particles on ITO with 1,2,4-Triazole-3-carboxylic Acid. Surface and Interfaces, 2018, 10, 162–169.
校內:2026-09-09公開