簡易檢索 / 詳目顯示

研究生: 洪全成
Hung, Chuan-Cheng
論文名稱: 光學式三維量測系統之建立及量測效能評估法則之研究
Development of an Optical Three Dimensional Measurement System and Its Performance Evaluation
指導教授: 蔡明俊
Tsai, Ming-June
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 200
中文關鍵詞: 低價位量測不確定度數位式微鏡片裝置。三維量測結構光校正
外文關鍵詞: Digital micro-mirror device (DMD)., Low cost, Calibration, Structured light, 3-D measurement, Measurement uncertainty
相關次數: 點閱:107下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在本篇論文當中,我們提出一套以結構光投射(structured light projection)為基礎之高精度三維量測系統,在量測過程中,由數位式微鏡片裝置(Digital Micro-mirrors Device, DMD)所組成之投射裝置,將Gray codes圖案投射至待測物表面,並由CCD擷取因表面高度變化所形成之扭曲影像;為了得到較佳之量測精度,我們建立一套三維數學模型,並發展出一校正程序以求得系統之校正參數,透過Gray codes編譯出DMD與CCD間具有唯一性之匹配對(correspondence pair),由匹配對與系統之校正參數可計算出待測物之座標。另外,為了提高量測解析度,我們亦提出結合Gray codes與次像素(sub-pixel)之對應性匹配方法,加上line-shifting技術的應用,可提升四倍之解析度,由實驗結果顯示,本研究系統在12 × 9 mm2量測範圍內,可達10µm之側向解析度(lateral resolution)與3µm之垂直方向解析度(vertical resolution)。

      除此之外,我們同時針對三維量測系統提出匹配不確定度(correspondence uncertainty)之快速評估方法,由系統之校正參數可發展出三維量測系統可量測區域之空間解析度數學模型,利用此數學模型可分析出DMD 與 CCD間之對應性匹配誤差,對於量測系統,由匹配不確定度所表示之性能指標(performance index)可以被用來評估系統之最高與最低解析度之範圍;由分析顯示,在量測範圍之上半區域有最低之匹配不確定度,此結果與系統之物理排列相吻合,在可量測範圍內,匹配不確定度的變化可達37.87%。最後,藉由對塊規(gauge block)之實際量測加以驗證本理論之可行性。

     In this research, we present a high-precision surface metrology system based on structured light projection. Gray code patterns are projected onto the object surface by a DMD projection device and a CCD camera captures the distorted pattern images. For the purpose of precision measurement, a 3-D mathematical model is proposed for the system and a calibration process is developed to obtain system parameters. The pattern is encoded with a unique ID and correspondence pairs between the CCD and DMD can be found. The surface profile can be computed by the calibrated model. In order to acquire higher measurement resolution, we propose a correspondence matching method which combines Gray codes encoding and sub-pixel edge detection. With a line-shifting procedure, the measurement resolution is elevated four times higher. Experiment results demonstrate the system has measurement area of 12 × 9 mm2, with lateral resolution about 10µm and vertical resolution about 3µm.

     Furthermore, an approach for fast evaluation of correspondence uncertainty in 3-D vision metrology systems is addressed. The mathematic model of spatial resolution measurement area of a 3-D active vision system is developed from the calibrated system parameters. Using the derived model, error of correspondence matching between DMD and CCD camera is analyzed. For each measurement result, a performance index, expressed in terms of correspondence uncertainty, is used for evaluation of the upper and lower bound of resolution. Our analysis shows that the upper part of the measurement area has the smallest correspondence uncertainty, which agrees well with the real physical arrangement. The variation of correspondence uncertainty within the measurement area is around 37.87%. Finally, based on the theoretical analysis of uncertainty bounds, an experimental measurement on gauge block was carried out to validate the method.

    TABLE OF CONTENTS 中文摘要 I ABSTRACT II ACKNOLOWLEDGEMENTS IV LIST OF TABLES V LIST OF FIGURES VI LIST OF SYMBOLS XIII CHAPTER 1. INTRODUCTION 1 1.1 Background and motivation 1 1.2 Objectives and Specific Aims 6 1.3 Dissertation Overview 8 2. LITERATURE REVIEW 10 2.1 Application of 3-D Measurement System 10 2.2 3-D Whole-Field Measurement System by Means of Structured Light 13 2.2.1 Laser Structured Light 14 2.2.2 Moiré Projection 17 2.2.3 Active Coded Structured Light 21 2.3 Calibration of Camera-Projector System and Correspondence Analysis 24 2-4 Performance Evaluation of 3-D Metrology Systems 26 3. DEVELOPMENT OF A PRECISION SURFACE METROLOGY SYSTEM 28 3.1 Principle of Active Coded Structured Light Metrology Systems 28 3.1.1 An Overview of Projector-Camera System 28 3.1.2 Correspondence Process Using Gray Codes 30 3.1.3 Introduction of Pattern Projection Devices 32 3.2 Optical Design and Installation of Projector-Camera System 37 3.2.1 Optical Design 37 3.2.2 Testing and Installation of OMM 46 4. SYSTEM MODELING AND CALIBRATION 49 4.1 System Modeling 49 4.2 Calibration of Projector-Camera System 52 4.2.1 Overview of Calibration Process 52 4.2.2 Manufacture of Calibration plate 54 4.2.3 Calibration of Lens Distortion 56 4.2.4 CCD Camera Calibration 59 4.2.5 Projection Device Calibration 64 4.2.6 Chess Calibration Method for Projector-Camera System 65 4.3 Error analysis of Calibration 69 5. DEVELOPMENT OF A COMPACT MEASUREMENT HEAD 72 5.1 Structure Light Projection with Gray Codes 72 5.2 Correspondence Matching Algorithm 77 5.2.1 Image Processing and Dynamics Threshold 78 5.2.2 Correspondence Matching 81 5.3 Development of A Compact Measurement Head 85 5.3.1 Scheme of Measurement Head 85 5.3.2 Main System Components 89 5.3.3 Process of Pattern Projection and Image Capture 97 5.4 Experimental Results with SLP Approach 98 6. IMPROVING ACCURACY OF THE THREE DIMENSIONAL MEASUREMENT SYSTEM 113 6.1 High Precision Locating of Fringe Edges and Centers 113 6.2 Combination of Sub-Pixel Edge Detection and Line-Shifting 124 6.3 Experimental Results with Sub-Pixel Edge Detection and Line-Shifting 127 7. MEASUREMENT PERFORMANCE EVALUATION OF A 3-D METROLOGY SYSTEM 138 7.1 Geometrical Correspondence Uncertainty for 3-D Measurement Systems 138 7.1.1 The Resolution Analysis and The Measuring Capability Evaluation of Computer Vision Systems 138 7.1.2 Definition of Measurement Area for Active Vision Measurement Systems 145 7.1.3 Correspondence Pairs and Spatial Resolution of MA 146 7.1.4 Estimation on Measurement Uncertainties with Performance Index 154 7.2 Experimental Evaluation and Results ……………………………………………….156 7.2.1 System Hardware Specification 156 7.2.2 Evaluation of Measurement System and Discussion 157 8. CONCLUSIONS 162 REFERENCES 167 APPENDIX A SYSTEM MODELING OF ACTIVE CODED STRUCTURED LIGHT MEASUREMENT SYSTEM 176 APPENDIX B SPECIFICATION OF SYSTEM COMPONENTS 184 VATA 199 著作權聲明 200

    REFERENCES

    [1] 財團法人工業技術研究院, 產業經濟與資訊服務中心, 2002, 「自動光學檢測(AOI)市場及技術發展趨勢調查」,經濟部產業技術資訊服務推廣計畫。
    [2] J. Le, J. J. Guo, H. Zhu, and Y. Zhou, A CMM-based Automatic Measurement Method for Surface Area, Proceedings of the World Congress on Intelligent Control and Automation (WCICA), Vol. 4, pp. 3723-3726, 2004.
    [3] E. E. Huges, A. Wilson, and G. N. Peggs, Design of a High-Accuracy CMM Based on Multi-Lateration Techniques, CIRP Annals - Manufacturing Technology, Vol. 49, No.1, pp. 391-394, 2000.
    [4] K. S. Moon, E. J. Salisbury, and J. W. Sutherland, Development of A Microscopic Laser Interferometry System for Precision Surface Measurement, American Society of Mechanical Engineers, Production Engineering Division (Publication) PED, Contact Problems and Surface Interactions in Manufacturing and Tribological Systems, Vol. 67, pp. 333-341, 1993.
    [5] P. Wade, and C. Tyler, Investigation of Various Unwrap/Reduction Methods to Quantify Phase-Shifted Holographic Interferometry, ICIASF Record, International Congress on Instrumentation in Aerospace Simulation Facilities, pp. 322-328, 1997.
    [6] V. Kramb, E. Shell, J. Hoying, L. Simon, and N. Meyendorf, Applicability of White Light Scanning Interferometry for High Resolution Characterization of Surface Defects, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 4336, pp. 135-145, 2001.
    [7] G. Udupa, M. Singaperumal, R. S. Sihori, and M. P. Kothiyal, Assessment of Surface Geometry Using Confocal Scanning Optical Microscope, Mechatronics, Vol. 8, No. 3, pp. 187-215, 1998.
    [8] G. Udupa, M. Singaperumal, R. S. Sihori, and M. P. Kothiyal, Characterization of Surface Topography by Confocal Microscopy: I. Principles and the measurement system, Measurement Science and Technology, Vol. 11, No. 3, pp. 305-314, 2000.
    [9] B. H. Zhuang, J. H. Zhang, C. Jiang, Z. Li, and W. Zhang, Precision Laser Triangulation Range Sensor with Double Detectors for Measurement on CMMs, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 2349, pp. 44-52, 1995.
    [10] D. P. Sarr, and P. W. Reed, Surface Roughness Measurement of Tooling Spheres for Laser Measurements Proceedings of SPIE - The International Society for Optical Engineering, Vol. 4189, pp. 229-238, 2001.
    [11] E. A. Franke, M. J. Magee, J. N. Mitchell, and M. P. Rigney, 3-D Precision Surface Measurement by Dynamic Structured Light, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 5265, pp. 24-32, 2004.
    [12] G. Sansoni, S. Lazzari, S. Peli, and F. Docchio, 3D Imager for Dimensional Gauging of Industrial Workpieces: State of the Art of the Development of a Robust and Versatile System, IEEE Proc. of Intern. Conf. on Recent Advances in 3-D Digital and Modeling, pp. 19-26, 1997.
    [13] G. Sansoni, L. Biancardi, U. Minoni, and F. Docchio, A Noval, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector, IEEE Tran. on Instrumentation and Measurement, Vol. 43, No. 4, pp. 558-566, 1994.
    [14] L. Paul, K. Buchner and R. Gast, Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics, Oral Surgery and Forensic Medicine, Proceedings of the 24th annual conference of the IEEE industrial electronics society, Vol 4, 1998.
    [15] R. Y. Tsai, A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses, IEEE Journal of Robotics and Automation, Vol. RA-3, No. 4, pp.323-344, 1987.
    [16] T. S. Shen, and C. H. Menq, Automatic Camera Calibration for a Multiple-Sensor Integrated Coordinate Measurement System, IEEE Transactions on Robotics and Automation, Vol. 17, No. 4, pp. 502-507, 2001.
    [17] G. Sansoni, M. Carocci, and R. Rodella, Calibration and Performance Evaluation of a 3-D Imaging Sensor Based on the Projection of Structured Light, IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 3, pp.628-636, 2000.
    [18] G. Sansoni, L. Biancardi, U. Minoni, and F. Docchio, , A Noval, Adaptive System for 3-D Optical Profilometry Using a Liquid Crystal Light Projector, IEEE Tran. on Instrumentation and Measurement, Vol. 43, No. 4, pp.558-566, 1994.
    [19] S. Y. Chen, Y. F. Li, Self-Recalibration of A Colour-Encoded Light System for Automated Three-Dimensional Measurement, Measurement Science and Technology, Vol. 14, pp. 33-40, 2003.
    [20] C. Sinlapeecheewa, K. Takamasu, 3D Profile Measurement by Color Pattern Projection and System Calibration, IEEE ICIT’02, 2002.
    [21] S.M. Yammy, and A. A. Farag, Free-Form Surface Registration Using Surface Signatures, International Conference on Computer Vision, Vol. 2, pp. 1098-1104, 1999.
    [22] D. Zhang, Harmonic shape images: A 3D Free-Form Surface Representation and Its Applications in Surface Matching, Ph.D. thesis, Carnegie Mellon University, Pittsburg, Pennsylvania 15213, USA.
    [23] J. L. Posdamer, and M. D. Altschuler, Surface Measurement by Spaced-Encoded Projected Beam Systems. Computer graphics and image processing, Vol. 18, pp. 1-17, 1982.
    [24] J. L. Moigne, and A.M. Kak, Structured Light Patterns for Robot Mobility, IEEE Journal of Robotics and Automation, Vol. 4, No. 5, 1988.
    [25] J. Tajima, and M. Iwakana, 3-D Data Acquisition by Rainbow Range Finder, International Conference on Pattern Recognition, pp 309-313, 1990.
    [26] S. Osawa; R. Furutani, K. Takamasu; S. Ozono, and H. Asano, 3-D Shape Measurement by Self-Referenced Pattern Projection Method, Measurement, Vol. 26, pp. 157-166, 1999.
    [27] I. Sobel, Neighbourhood Coding of Binary Images Fast Contour Following and General Array Binary Processing, Computer graphics and image processing, Vol. 8, pp. 127-135, 1978.
    [28] D. Marr, and E.C. Hildreth, Theory of Edge Detection, Proceedings of the Royal Society 207B, pp. 187-217, 1980.
    [29] B. Kamgar-Parsi, and B. Kamgar-Parsi, Evalution of Quantization Error in Computer Vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 9, pp. 929- 940, 1989.
    [30] S. D. Blostein and T. S. Huang, "Error Analysis in Stereo Determination of 3-D Point Positions," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, No. 6, 1987.
    [31] C. C. Yang, and F. W. Ciarallo, Optimized Sensor Placement for Active Visual Inspection, Journal of Robotic Systems, Vol. 18, No.1, pp.1-15, 2001.
    [32] C. Che, and J. Ni, A Generic Coordinate Transformation Uncertainty Assessment Approach and Its Application in Machine Vision Metrology, Int. J. of Machine Tool & Manufacture, Vol. 38, pp. 1241-1256, 1998.
    [33] A. Lazzari, and G. Iuculano, Evaluation of The Uncertainty of An Optical Machine with A Vision System for Contact-Less Three-Dimensional Measurement, Measurement, Vol. 36, pp. 215-231, 2004.
    [34] M. D. Santo, C. Liguori, and A. Pietrosanto, Uncertainty Characterization in Image-Based Measurements: A Preliminary Discussion, IEEE Transactions on instrumentation and measurement, Vol.49, No.5, 2000.
    [35] M. D. Santo, C. Liguori, A. Paolillo, and A. Pietrosanto, Standard Uncertainty Evaluation in Image-Based Measurements, Measurement, Vol. 36, pp.347-358, 2004.
    [36] Y. F. Li, and S. Y. Chen, Automatic Recalibration of An Active Structured Light Vision System. IEEE Transactions on Robotics and Automation, Vol. 19, No. 2, pp. 259- 268, 2003.
    [37] G. Olague, and R. Mohr, Optimal Camera Placement for Accurate Reconstruction, Pattern Recognition, Vol.35, pp. 927-944, 2002.
    [38] T. Kanade, and H. Asada, Non-Contact Visual Three Dimensional Ranging Devices, SPIE, Vol. 283, pp. 48-53, 1981.
    [39] S. Parthasarathy, J. Birk, and J. Dessimoz, Laser Rangefinder for Robot Control and Inspection, SPIE, Vol. 336, pp. 2-11, 1982.
    [40] G. B. Porter III, and J. L. Mundy, Noncontact Profile Sensing System for Visual Inspection, SPIE, Vol. 336, pp. 67-76, 1982.
    [41] G. J. Agin, and P. T. Highnam, Movable Light-Stripe Sensor for Obtaining Three-Dimension Coordinate Measurement, SPIE, Vol. 360, pp. 326-333, 1982.
    [42] M. D. Altschuler, B. R. Altschuler, and J. Taboada, Measuring Surface Space Coded by a Laser Projected Dot Matrix, SPIE, Vol. 182, pp. 187-191, 1979.
    [43] B. F. Alexander, and K. C. Ng, A Liquid Crystal Projection System for 3D Imaging, Proc. 5th Int. Conf. Robot Vision and Sensory Controls, pp. 211-222, 1985.
    [44] P. M. Will, and K. S. Pennington, Grid Coding: A Novel Technique for Image Processing, IEEE Proceeding. Vol. 60, pp. 669-680, 1972.
    [45] J. A. Jalkio, R. C. Kim, and S. K. Case, Three Dimensional Inspection Using Multistripe Structured Light, Optical Engineering. Vol. 24, pp. 966-974, 1985.
    [46] F. Chen, G. M. Brown, M. Song, Overview of Three-Dimensional Shape Measurement Using Optical Methods, Optical Engineering, Vol. 39, No. 1, pp. 10-22, 2000.
    [47] G. Oster, and Y. Nishijima, "Moiré Patterns," Science. America., Vol. 208, No. 5, pp.54-63, 1963.
    [48] D. M. Meadows, W. O. Johnson, and J. B. Allen, Generation of Surface Contours by Moiré Patterns, Apply Optics, Vol. 9, No. 4, pp. 942-947, 1970.
    [49] H. Takasaki, Moiré Topography, Apply Optics, Vol. 9, No. 6, pp.1467-1472, 1970.
    [50] H. Takasaki, Moiré Topography, Apply Optics, Vol. 12, No. 4, pp. 845-850, 1973.
    [51] J. Wasowski, Moiré Topographic Maps, Optics Communication, Vol. 2, No. 7, pp. 321-323, 1970.
    [52] F. Gray, Pulse Code Communication, U. S. Patent 2 632 058, March 17, 1953.
    [53] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.
    [54] C. C. Hung, Y. C. Lu, and W. H. Yang, A Survey on Optical 3-D Measurement Methods for Micro-Components, The Seventh International Conference on Automation Technology, pp. 77-82, 2003.
    [55] J. Gühring, Dense 3-D Surface Acquisition by Structured Light Using Off-the-shelf Components, Proceedings of SPIE - The International Society for Optical Engineering, Vol. 4309, pp. 220-231, 2001.
    [56] D. Scharstein, and R. Szeliski, High-Accuracy Stereo Depth Maps Using Structured Light, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp.195-202, 2003.
    [57] T. G. Stahs, and F. M. Wahl, Fast and Robust Range Data Acquisition in a Low-Cost Environment, SPIE, Close-Range Photogrammetry meets Machine Vision, pp. 496-503, 1990.
    [58] R. J. Valkenburg, and A. M. McIvor, Accurate 3D Measurement Using A Structured Light System, Elsevier Science, pp.99-110, 1998.
    [59] M. Fujigaki, Y. Morimoto, Accuracy of Real-Time Shape Measurement by Phase-Shifting Grid Method Using Correlation, JSME International Journal, Series A, Vol. 43, No. 4, pp. 314-320, 2000.
    [60] G. Sansoni, 3D Optical Whole-Field Range Sensor: Development of Procedures for The Automatic Set-Up of the Measurement and the Calibration of the System, IEEE Proc. of Instrumentation and Measurement Technology Conference, Vol. 2, pp. 1154-1159, 1999.
    [61] G. Sansoni, M. Carocci, and R. Rodella, Calibration and Performance Evaluation of A 3-D Imaging Sensor Based on The Projection of Structured Light, IEEE Transactions on Instrumentation and Measurement, Vol. 49, No. 3, pp.628-636, 2000.
    [62] D. Scharstein, and R. Szeliski, High-Accuracy Stereo Depth Maps Using Structured Light, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp.195-202, 2003.
    [63] J. M. Younse, Projection Display Systems Based on the Digital Micro-mirror Device (DMD), SPIE Conference on Microelectronic Structures and Micro-electro-mechanical Devices for Optical Processing and Multimedia Applications, Vol. 2641, pp. 64-75, 1995.
    [64] P. F. Van, R. E. Kessel, and M. R. Douglus, A MEMS-Based Projection Display, Proceeding of The IEEE, Vol. 86, No. 8, 1998.
    [65] L. J. Hornbeck, Digital Light Processing (DLPTM) and MEMS: Timely Convergence for A Bright Future, Proc. SPIE, Vol. 2639, pp. 2, 1995.
    [66] L. J. Hornbeck, Digital Light Processing. for High-Brightness, High-Resolution Applications,. Proc. SPIE, Projection Displays III, Vol. 3013, pp. 27-40, 1997.
    [67] TOKINA Industrial, INC, http://www.tokina-usa.com/product.html.
    [68] Go Edmund Optics, http://www.edmundoptics.com/techsupport.
    [69] G. P. Stein, Lens Distortion Calibration Using Point Correspondence, IEEE Proceedings of Computer Society Conference on Computer Vision and Pattern Recognition, 1997.
    [70] R. Y. Tsai, A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses, IEEE Journal of Robotics and Automation, Vol. RA-3, No. 4, pp.323-344, 1987.
    [71] H. Liu, B. A. Bard, G. Lu, and S. Wu, Absolute Measurement of Surface Profiles with Phase-Shifting Projected Fringe Profilometry, SPIE Proc. Optical Manufacturing and Testing Ⅲ, Vol. 3782, pp. 283-190, 1999.
    [72] W. Press, S. Teuklosky, W. Vetterling, and B. Flannery, Numerical Recipes in C++, Cambridge University Press, 2002.
    [73] M. J. Tsai, C. C. Hung, S. K. Kuo, and C. C. Lin, Development of A Precision Surface Metrology System, Processing of The 21st National Conference on Mechanical Engineering, pp. 6505-6511, 2004.
    [74] D. Scharstein, and R. Szeliski, High-Accuracy Stereo Depth Maps Using Structured Light, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp.195-202, 2003.
    [75] Q. Gao, M. Fujigaki, and Y. Morimoto, Real-time Shape Measurement Method Using Digitial Micro-mirror Device, JSME Proc. Material Mechanics, No.01-16, pp.129-130. 2001.
    [76] S. K. Kuo, W. H. Yang, C. C. Lin, M. J. Tsai, C. C. Hung, Development of a High-Precision Surface Metrology System and Its Uncertainty Analysis, IEEE International Conference on Hands-on Intelligent Mechatronics and Automation, 2005.
    [77] M. Sonka, V. Hlavac, and R. Royle, Image Processing, Analysis, and Machine Vision, 2nd Edition, New York, 1999.
    [78] G. Sansoni, 3D Optical Whole-Field Range Sensor: Development of Procedures for the Automatic Set-Up of The Measurement and The Calibration of The System, IEEE Proc. of Instrumentation and Measurement Technology Conference, Vol. 2, pp. 1154-1159, 1999.
    [79] T. S. Shen, C. H. Menq, Automatic Camera Calibration for A Multiple-Sensor Integrated Coordinate Measurement System, IEEE Transactions on Robotics and Automation, Vol. 17, No. 4, pp.502-507, 2001.
    [80] T. G. Stahs, F. M.Wahl, Fast and Robust Range Data Acquisition in A Low-Cost Environment, SPIE, Close-Range Photogrammetry meets Machine Vision, pp. 496-503, 1990.
    [81] C. W. Chu, S. Hwang, and S. K. Jung, Calibration-free Approach to 3D Reconstruction Using Light Strip Projections on a Cube Frame, Proc. IEEE 3rd Int. Conf. on 3D Digital Imaging and Modeling, pp. 13-1, 2001.
    [82] Texas Instruments, http://www.dlp.com/dlp_technology/dlp_technology_overview.asp.
    [83] Silicon Imaging, http://www.siliconimaging.com/.
    [84] EPIX, INC, http://www.epixinc.com/products/pixci_cl1.htm.
    [85] ASUS, INC, http://usa.asus.com/products/vga/v9520ht/overview.htm.
    [86] X. Y. Su, L. Xue, Phase Unwrapping Algorithm Based on Fringe Frequency Analysis in Fourier Transformation Profilometry, Opt. Eng. Vol. 40, pp. 637-643, 2001.
    [87] O. A. Skydan, M. J. Lalor, and D. R. Burton, Technique for Phase Measurement and Surface Reconstruction by Use of Colored Structured Light, Applied Optics, Vol. 41, No. 29, pp. 6104-6117, 2002.
    [88] D. R. Burton, A. J. Goodall, J. T. Atkinson, and M. J. Labor, The Use of Carrier Frequency Shifting for The Elimination of Phase Discontinuous in Fourier Transform Profilometry, Opt. Lasers Eng. Vol. 23, pp. 245-257, 1995.
    [89] H. Zhau, W. Chen, and Y. Tan, Phase-Unwrapping Algorithm for The Measurement of Three- Dimensional Object Shapes, Apply Optics, Vol. 33, pp. 4497-4500, 1994.
    [90] R. B. Fisher, D. K. Naidu, A Comparison of Algorithms for Sub-pixel Peak Detection, in J. Sanz (ed.), Advances in Image Processing, Multimedia and Machine Vision, Springer-Verlag, Heidelberg, 1996.
    [91] R. W. Webster and Y. Wei, A Robot Golfing System Using Binocular Stereo Vision and a Heuristic Feedback Mechanism,” Proceeding of the 1992 IEEE/RSJ International Conference on Intelligent Robots and System, pp. 2027-2034, 1992.
    [92] 蔡明俊,黃良印,王哲仁,1995,利用主動式光源發展立體視覺系統, 中國機械工程學會第十二屆學術研討會(系統控制組)。
    [93] M. J. Tsai and Y. R. Hsu, Analysis and Evaluation of 3D Vision System Performance, unpublished paper, National Cheng-Kung University.
    [94] K. G. Harding, T. W. Lloyd, and J. B. Ross, Method and Device for Reduction in Noise in Images from Shiny Parts, U. S. Patent 6,678,057 B2, Jan. 17, 2004.
    [95] L. S. Ricardo, B. Thorsten, and P. J. Werner, Accurate Procedure for The Calibration of A Structured Light System, Optical Engineering, Vol. 43, No. 2, pp. 1-8, 2004.
    [96] T. P. Koninckx, I. Geys, T. Jaeggli, and L. V. Gool, A Graph Cut Based Adaptive Structured Light Approach for Real-Time Range Acquisition, Proceeding of the 2nd Intl Symp 3D Proceeding, Visualization, and Transmission (3DPVT 2004), pp. 134-142, 2004.
    [97] P. Huang and S. Zhang, High-Resolution, Real-Time 3D Shape Acquisition, In IEEE Workshop on Real-Time 3D Sensors and Their Uses, 2004.
    [98] T. Pribanic, M. Cifrek, and S. Peharec, 3D Shape Recovery with no Explicit Video Projector Calibration, WSCG POSTERS proceedings, pp. 224-227, 2004.
    [99] J. C. Lee, P. H. Dietz, D. Maynes-Aminzade, S. E. Hudson, Automatic Projector Calibration with Embedded Light Sensors, Technical Report of Mitsubishi Electric Research Laboratory, TR-2004-036, 2004.
    [100] J. Salvi, J. Pags, and J. Batlle, Pattern Codification Strategies in Structured Light Systems, Pattern Recognition, Vol. 37, No. 4, pp. 827-849, 2004.
    [101] J. P. Tardif and S. Roy, A MRF Formulation for Coded Structured Light, The 5th International Conference on 3-D Digital Imaging and Modeling (3DIM'2005), pp. 217-224, 2005.

    下載圖示 校內:2006-06-29公開
    校外:2007-06-29公開
    QR CODE